
The open source,
functional programming

platform flow
HOW TO COMBINE THE PRINCIPLES OF ALAN KAY, CODE SIMPLICITY & THE ZEN OF PYTHON

SECR 2019 – asger@area9.dk – Asger Palm

mailto:asger@area9.dk

…the aim is to reduce
the amount of code

needed to make systems
by a factor of 100, 1000,

10,000, or more

Alan Kay’s STEPS Toward the Reinvention of Programming

Presenter
Presentation Notes
A thousands lines of C or C++ code typically ends up as 10kb of code in an executable. The .EXE and .DLLs for Skype is around 100 MB. The DLLs in the Office suite is 500 MB. Windows 10 is 50 million lines of code. Clearly, the amount of code written to allow you to see this is in the hundreds of millions of lines of code. No human being will ever have a chance to understand that. Alan Kay’s position is that this is a problem, and we have to do better. We have to reinvent programming so we can achieve the same with much fewer lines of code. A programmer writes a given number of lines of code each day. That is more or less constant, no matter what the language is. Thus, to us, if we can achieve more with fewer lines of code, it means the programmers are more efficient.
When we designed the flow programming platform, we had this idea in mind. We tried to make a language where you could express a lot of functionality in a few lines of code.

http://www.vpri.org/pdf/tr2007008_steps.pdf

Max Kanat-Alexander’s Code Simplicity

desirability =
future
value

effort of
maintenance

Presenter
Presentation Notes
The biggest problem with writing big systems is to keep the complexity down. To help guide decisions in this regard, Code Simplicity provides a set of guidelines for how to manage this. A key principle is that the benefit of any change in the code is decided by the value in the future (multiplied by the probability that it is indeed valuable over time), and divided by the cost of writing and maintaining it for the lifetime of the code. Any piece of code that lives for a long time will have to be changed. So if the code lives for long, that means that the ease of maintainability dominates the cost. This in turn implies that code has to be simple. �The three most common mistakes are: 1) Writing code that isn’t needed. 2) Not making the code easy to change. 3) Being too generic.�Rewriting is accepted only in very few situations.�When we designed flow, we kept these principles in mind, and tried to design a platform that made it easy to keep things simple and maintainable.

https://www.codesimplicity.com/

Guido van Rossum – The Zen of Python

There should be one ‒
and preferably only one
‒ obvious way to do it

Presenter
Presentation Notes
Besides having a language, which supports short, powerful and maintainable code, it is also important that you can build a team around it. The Zen of Python is a list of 19 values that underlie Python. Those values include the idea that there should be one, and preferably only one way to do things. We tried to achieve the same goal in Flow.

https://www.python.org/dev/peps/pep-0020/

The Zen of Python

Code simplicity

Reinventing Programming

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way
to do it.
Although that way may not be obvious at first unless you're
Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of
those!

Presenter
Presentation Notes
Here is a summary of some of these ideas. In one sense, when we designed flow, we took all of these principles and concepts and tried to make a programming platform that encourages and promotes these principles and ideas.

Flow

= The Reinvention of Programming

+ Code Simplicity

+ The Zen of Python

Presenter
Presentation Notes
Thus, flow is an attempt of combining these three principles. In the following, I’ll explain how we do it, and I hope you will be able to see that you can also adopt these principles in whatever languages you use.

Flow = Small + Simple + Powerful

Allows a big team to work together to build maintainable
systems with much fewer lines of code compared to

other languages

Presenter
Presentation Notes
So to state the goal of flow in a different way, flow is small. That means it is easy to implement on many platforms. Simple means that it is relatively easy to learn for programmers that know other languages. Flow is powerful because it is based on existing insights from programming language research.

Flow = Standard ML + Curly-brace Syntax + Subtyping

Functional language with static typing
and familiar syntax

Presenter
Presentation Notes
Specifically, flow is based on the core principles of Standard ML. At the core, it is a Hindley-Milner statically typed language, but with a curly-brace syntax. We chose this syntax since it is easier to understand for most programmers that come from Java, C# or JavaScript. Static typing means that code is maintainable and changeable. Flow intentionally does NOT have some features. The module system is as simple as possible. There are no while- or for-loops. To express iteration, you use fold, map, filter and recursion. That helps to keep the code uniform, readable and correct. It obeys the principle that there is only one and easy way to do things. There are no null pointers or exceptions. Flow is designed to be as robust as possible and the result is that there are only a few ways a flow program can crash: Out of stack, array out of bounds, divide by zero. There is no inheritance, so we keep things explicit and not implicit. We added subtyping, which allows code to be reused more easily.

Flow = Compiler/JIT + Library + Debugger + Profiler

VS Code/Sublime/Emacs plugins provides productivity

Presenter
Presentation Notes
So in other words, flow is a complete programming platform. Let us have a look at how it looks. First, here is “Hello world” which we will run from VS Code. We can also show euler4.

Flow = HTML + iOS + Android + Desktop + Server (Java)

Presenter
Presentation Notes
Flow is a multi-platform language. Since it is small and simple, we have backends for all of these targets. It is relatively easy to add more. This also means that we have very little impedance mismatch between client and server code, since the exact same code and data representations can be used both client and server side. The code also runs as native apps on mobile devices. We also support progressive web apps, which allow you to skip the app store fees and approval processes. Show how hello world runs on the desktop, and then as java, and then in the web-browser.

Flow = Material + FRP + FForm + Natives + …

Presenter
Presentation Notes
The library of Flow contains a complete UI tooltip called Material. This implements the Google Material Guidelines. It is based on FRP, functional reactive programming. The interface to the OS is done through natives. That allows us to abstract the code and let the same code run pixel-precise on all platforms. Let us see some of the demo program with FRP and explain it.

Flow = ∑Domain Specific Languages

Embedded and external DSLs increase
expressivity and compositionality

Presenter
Presentation Notes
You saw how Material and the UI is an embedded domain specific language. They have been designed to be very expressive and compositional. We get a lot of functionality in very few lines of code. This principle is used throughout the platform.

The World’s First Four-Dimensional Adaptive Learning Platform

Presenter
Presentation Notes
Next, show Rhapsode Curator, in particular the Wigi editor. Insert a slider, a calculated cell, and explain how those map directly down to the Material and FRP components. The wigi document is in itself a DSL. Show the AST for it from wigi/types.
Also show the data table UIs, and then show the SQL schema for rhapsode_organizations. Illustrate how the comments adorn the schema, and thus forms a DSL. Also show the master keys for that table to illustrate how we define the security.

Reinvention of Prog. Code Simplicity Zen of Python

Small Simple Powerful

Standard ML Curly-brace syntax Subtyping

Compiler JIT Library Debugger Profiler

HTML iOS Android Desktop Server (Java)

Material FRP FForm Natives

DSL 1 DSL 2 DSL 3 DSL 4 …

Flow =

↔

http://flow9.org/

Presenter
Presentation Notes
So to summarize, flow can be see from many angles. Go and have a look yourself at this site.

http://flow9.org/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

