
How to Draw QA Architecture Automation 
in Few Slight Movements

Anton Semenchenko



About
• QA community COMAQA co-founder
• C++ community CoreHard co-founder
• “International IT” community InterIT co-founder
• 50+ international conferences organizer
• IT evangelist (300+ speeches on meetups and 

conferences)
• Field of scientific interest: using math for 

differential diagnostic in cardiology, psychiatry, 
virology and immunology

• C++ books editor
• QA Automation, QA Management, Low level 

development, Agile trainer
• ICAgile Certified Professional

Anton Semenchenko



How to Draw QA Architecture Automation in 
Few Slight Movements: goals

1. Show that visual representation of framework makes it easier to 
support the project, provide knowledge transfer and implement new 
features;

2. Provide a ready-to-go example of how to draw architecture in few 
minutes (for UI project, as example);

3. Demonstrate that “Architecture” is not frightening as it may sound 
like;

4. Show you hints of drawing schemes at interviews, knowledge-
transfers, etc…



QA Automation Architecture as a technical 
challenge

1. Main challenge – find evolutionary changing balance point;
2. Solution should not be too complicated, or too simple;
3. Finding that balance point which is changing from time to time - is 

the most complicated part of architecture;
4. When balancing is low in quality - business will financially suffer;
5. Tech discussion about project hypothetical growth are always futile;
6. And tech understanding may be different from business needs –

results in monstrously complex project;
7. Solving “balancing Architecture challenge” - by using visualization and 

focusing. 



Legend

Entity

Note
Color == level \
frequency of 
interactions inside one 
layer

Direction == use
Bi-direction == equal
Weight == frequency 
or probability of 
interactions
Dashes == potential 
relations

?

Topic that require additional 
investigation, and can be 
covered via conversation at 
community stand



3 main layers & external data source with 
locators

Page Object

Low Level Actions

Business Actions

Under the hood of a Test

External data source with 
locators, for example:
• ini file
• xml
• json
• Java property file



3 main layers & any UI Engine

Selenium WebDriver

Selenium Wrapper

Selenium Helper

UI Engine

? Do we need a wrapper
? Can we use Selenium directly via Wrapper

?

“Smart” 
Singleton

Change UI Automation Engine case



3 main layers & any UI Engine
Option 1: simpler => preferable

Page Object

Low Level Actions

Business Actions

Under the hood of a Test

External data source 
with locators, for 
example:
• ini file
• xml
• json
• Java property file

Selenium 
WebDriver

Selenium 
Wrapper

Selenium Helper

UI Engine

??

?
?

Test
?

“Smart” Singleton

??
?
?



3 main layers & any UI Engine; Sption 2: more 
complicated - Yandex WebElements based

Change UI Automation Engine case

“Smart”” Singleton
?

Page Object

Low Level Actions

Business Actions

Under the hood of a Test

External data source 
with locators, for 
example:
• ini file
• xml
• json
• Java property file

Selenium 
WebDriver

Selenium 
Wrapper

Selenium Helper

UI Engine

??

?
?Seldom

?

Test



3A Rule
Arrange, Act, Assert test structure rule

Basically tests consist of 3 steps:
• Arrange - establishing the test environment;
• Act - executing the logic;
• Assert - verifying the expectation.



Test & 3A Rule
Arrange, Act, Assert test structure rule

Test

Arrange

Act

Assert

Page Object

Low Level Actions

Business Actions

Under the hood of a Test



Test & 3A Rule - Arrange

Test

Arrange

Act

Assert

DB Engine

API Engine

Rest Engine

SOAP 
Engine

“Smart”” 
Singleton ?

Business Actions

Under the hood of a Test

Data source 
(DDT)



Test & 3A Rule - Act

Test

Arrange

Act

Assert
Business Actions

Under the hood of a Test



Test & 3A Rule - Assert

Test

Arrange

Act

Assert

Assert Engine

Test Runner

Selenium Wrapper

Selenium Helper

UI Engine



Test & 3A Rule: Arrange, Act, Assert

Business Actions

Under the hood of a Test
Test

Arrange

Act

Assert

DB Engine

API Engine

Rest Engine

SOAP 
Engine

“Smart”” 
Singleton

?

?

?

Assert Engine

Test Runner

Selenium 
Wrapper

Selenium 
Helper

Data source 
(DDT)



Test & “Global” Entities \ “Smart Singleton”

Test

Arrange

Act

Assert

Logger

Tracer
“Smart”” 
Singleton

Reporting 
Engine

Test Runner



Test & “Global” Entities \ “Smart Singleton”

Test

Arrange

Act

Assert

Logger

Tracer
“Smart”” 
Singleton

Reporting 
Engine

Test Runner

Reporting 
Engine



Test

Arrange

Act

Assert

Logger

Tracer
“Smart”” 
Singleton

Reporting 
Engine

Test Runner

Reporting 
Engine

Parallelization 
Engine

Test & “Global” Entities - run test in parallel



Test level mapping: 4 examples of entities 
mapping in one

Test

Arrange

Act

Assert

Keyword based Test Case 
for Automation

The same Test case for 
Automation in a Flow way

Gherkin scenario

The same Test case for 
Automation using DSL



QA Automation approaches
Keyword, BDD, Fluent interface, DSL

1. Ubiquitous language
2. Key word driven QA Automation
3. Behavior Driven Development (BDD) approach – as a special case of DSL based 

QA Automation solutions
4. Domain specific language (DSL) based QA Automation
5. Flow – as a way of implementation DSL\BDD
6. Flow- fluent interface is an implementation of an object oriented API that aims 

to provide more readable code.

http://martinfowler.com/bliki/UbiquitousLanguage.html
https://en.wikipedia.org/wiki/Keyword-driven_testing
https://en.wikipedia.org/wiki/Behavior-driven_development
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
http://martinfowler.com/bliki/FluentInterface.html
https://en.wikipedia.org/wiki/Object_oriented_design


Test level mapping: 4 examples of entities 
mapping in one

Test

Arrange

Act

Assert

Keyword based Test Case 
for Automation

The same Test case for 
Automation in a Flow way

Gherkin scenario

The same Test case for 
Automation using DSL



Business Action level mapping: 4 examples of 
entities mapping in one

Page Object

Low Level Actions

Business Actions

Under the hood of a Test

Implemented keyword 
(verb on noun)

Implemented API in a Flow 
way

Implemented Gherkin Step

Internal, external or hybrid 
DLS construction



Test & 3A Rule: 4 examples of entities 
mapping in one

Page Object

Low Level Actions

Business Actions

Under the hood of a TestTest

Arrange

Act

Assert

Keyword based 
Test Case for 
Automation

The same Test case 
for Automation in 

a Flow way

Gherkin scenario

The same Test case 
for Automation 

using DSL

Implemented 
keyword (verb

on noun)

Implemented 
API in a Flow 

way

Implemented 
Gherkin Step

Internal, 
external or 
hybrid DLS 

construction



Conclusion: 4 results of the presentation for 
technical specialists

1. visual representation makes it easier to understand the project 
when you new to it;

2. show you that architecture is not as frightening as it may sound 
like;

3. helpful tip for any interview – draw simple project’s diagram;
4. provided you with the presentation, which can be used as a 

cheat sheet.



Conclusion: 3 results of the presentation for 
Business

1. solve “balancing Architecture challenge” – by creating 
diagrams;

2. avoid potential issues of over complexing or over simplification 
of the system; 

3. completing those saves money for our partners and increase 
quality of the final product.



Contact Information

Anton Semenchenko

Email: semenchenko_anton_v@tut.by

Skype: semenchenko_anton_v

Telegram: +375 33 33 46 120

Phones: +375 33 33 46 120 & +375 44 74 00 385 74 00 

https://www.facebook.com/semenchenko.anton.v

https://www.linkedin.com/in/anton-semenchenko-612a926b/

https://twitter.com/comaqa

mailto:semenchenko_anton_v@tut.by
https://www.facebook.com/semenchenko.anton.v
https://www.linkedin.com/in/anton-semenchenko-612a926b/
https://twitter.com/comaqa


Thank you for you attention!

Bid you farewell!

http://conference.comaqa.by/

https://comaqa.by/

https://www.youtube.com/channel/UCzAhXR53eIvHht9qmF
PBVxg

http://conference.comaqa.by/
https://comaqa.by/
https://www.youtube.com/channel/UCzAhXR53eIvHht9qmFPBVxg


QA Automation approaches

Keyword, BDD, Fluent interface, DSL

• Domain specific language (DSL) based QA Automation
• Flow – as a way of implementation DSL\BDD
• Flow- fluent interface is an implementation of an object oriented API that aims 

to provide more readable code.
• A fluent interface is normally implemented by using method 

cascading (concretely method chaining) to relay the instruction context of a 
subsequent call (but a fluent interface entails more than just method chaining).

• Generally, the context is defined through the return value of a called method 
self-referential, where the new context is “equivalent” to the last context 
terminated through the return of a void context.

https://en.wikipedia.org/wiki/Domain-specific_language
http://martinfowler.com/bliki/FluentInterface.html
https://en.wikipedia.org/wiki/Object_oriented_design
https://en.wikipedia.org/wiki/Method_cascading
https://en.wikipedia.org/wiki/Method_chaining


QA Automation approaches
Fluent interface by Martin Fowler

• “Building a fluent API like this leads to some unusual API habits.”
• “One of the most obvious ones are setters that return a value.”
• “The common convention in the curly brace world is that modifier methods are 

void, which I like because it follows the principle of CommandQuerySeparation. 
This convention does get in the way of a fluent interface, so I'm inclined to 
suspend the convention for this case.”

• “You should choose your return type based on what you need to continue fluent 
action.”

• “The key test of fluency, for us, is the Domain Specific Language quality. The 
more the use of the API has that language like flow, the more fluent it is”

http://martinfowler.com/bliki/CommandQuerySeparation.html


QA Automation approaches
DSL – Domain Specific Language

• DSL = Domain (ether technical or business … or both – Gherkin for specific 
domain) + Language

• Language = Dictionary + Structure
• Dictionary = Ubiquitous language
• Structure = some rules how to combine words (business terms) from dictionary 

in a proper ways (based on business logic)
• Way of implementation (one of the ways) – Flow Design Pattern



QA Automation approaches
DSL by Martin Fowler

• The basic idea of a domain specific language (DSL) is a computer language that's 
targeted to a particular kind of problem (QA Automation or even QA 
Automation in exact domain), rather than a general purpose language that's 
aimed at any kind of software problem. Domain specific languages have been 
talked about, and used for almost as long as computing has been done.

• DSLs are very common in computing: examples include CSS, regular expressions, 
make, rake, ant, SQL, HQL, many bits of Rails, expectations in JMock …

• It's common to write tests using some form of DomainSpecificLanguage, such as 
Cucumber or an internal DSL. If you do this it's best to layer the testing DSL over 
the page objects so that you have a parser that translates DSL statements into 
calls on the page object.



QA Automation approaches
DSL types by Martin Fowler

• Internal DSLs are particular ways of using a host language to give the host 
language the feel of a particular language. This approach has recently been 
popularized by the Ruby community although it's had a long heritage in other 
languages - in particular Lisp. Although it's usually easier in low-ceremony 
languages like that, you can do effective internal DSLs in more mainstream 
languages like Java and C#. Internal DSLs are also referred to as embedded DSLs 
or FluentInterfaces



QA Automation approaches
DSL types by Martin Fowler

• External DSLs have their own custom syntax and you write a full parser to 
process them. There is a very strong tradition of doing this in the Unix 
community. Many XML configurations have ended up as external DSLs, although 
XML's syntax is badly suited to this purpose.

• Mixed (internal with external)
• Graphical DSLs requires a tool along the lines of a Language Workbench.

http://martinfowler.com/articles/languageWorkbench.html

