(lntel) Look Inside”

Tuning Python Applications Can
Dramatically Increase Performance

Vasilij Litvinov

Software Engineer, Intel

;ﬁi« CEE-SECR sl

Software Engineering

] e
Conference in Russia m
o]|

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Agenda

Why do we need Python optimization?

How one finds the code to tune?

Overview of existing tools

An example

Intel® VTune Amplifier capabilities and comparison
Q&A

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why do we need Python optimization?

« Python is used to power wide range of software, including
those where application performance matters

« Some Python code may not scale well, but you won’t know it
unless you give it enough workload to chew on

e Sometimes you are just not happy with the speed of your code

All in all, there are times when you want to make your code run
faster, be more responsive, (insert your favorite buzzword here).

So, you need to optimize (or tune) your code.

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

How one finds the code to tune —
measuring vs guessing

e Hard stare = Often wrong
=

 Logging = Analysis Is tedious

 Profile = Accurate, Easy

Not All Profilers Are Equal

There are different profiling techniques, for example:

G5 Event-based
(.I* e Example: built-in Python cProfile profiler

e |nstrumentation-based

S
E » Usually requires modifying the target application
(source code, compiler support, etc.)

 Example: line_profiler

e Statistical

e Accurate enough & less intrusive

o Example: vmstat, statprof

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Most Profilers — High Overhead, No Line Info

level

cProfile Text interactive Function 1.3x-5x
(built-in) mode: “pstats” (built-
in)
 GUI viewer:
RunSnakeRun

 Open Source

Python * Visual Studio (2010+) Windows Function ~2x

Tools Open Source

PyCharm * Not free Any Function 1.3x-5x (same
» cProfile/lyappi based as cProfile)

line_profiler « Pure Python Any Line Up to
 Open Source 10x or more

o Text-only viewer

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Example performance hogs

Slow way Faster way
Concatenate |s = "' s = '"'.join(some_lst)
a list for ch in some_lst:
S += ch
reason
Remove while some_value in 1lst: while True:
some value lst.remove(some_value) try:
from a list 1st.remove(some_value)
except ValueError:
break
reason

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Python example to profile: demo.py

class Encoder:
CHAR MAP = {'a': 'b', 'b': 'c'}
def init (self, input):
self.input = input

def process slow(self):
result = "’
for ch in self.input:
result += self.CHAR_MAP.get(ch, ch)
return result

def process fast(self):
result = []
for ch in self.input:
result.append(self.CHAR_MAP.get(ch, ch))
return ''.join(result)

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Python sample to profile: run.py

import demo
import time

def slow_encode(input):
return demo.Encoder(input).process_slow()

def fast_encode(input):
return demo.Encoder(input).process_fast()
if name_ == " main_ ':
input = "a' * 10000000 # 10 millions of 'a’
start = time.time()
sl = slow_encode(input)
slow stop = time.time()
print 'slow: %.2f sec' % (slow _stop - start)
s2 = fast_encode(input)
print 'fast: %.2f sec' % (time.time() - slow_stop)

No profiling overhead - a
= baseline for tools’ overhead
comparison

slow: 9.15 sec = 1.00x
fast; 3.16 sec = 1.00x

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

cProfile + pstats Ul example

> python -m cProfile -0 run.prof run.py
> python -m pstats run.prof

run.prof% sort time
run.prof% stats
Tue Jun 30 18:43:53 2015 run.prof

30000014 function calls 1n 15.617 seconds
Ordered by: internal time

ncalls tottime percall cumtime percall Tilename:lineno(function)
1 9.597 .597 10.268 10.268 demo.py:6(process_slow)
1 3.850 -850 .302 .302 demo.py:12(process_ fast)
20000000 1.267 -000 .267 -000 {method "get" of "dict" objects}
10000000 0.790 -000 -790 -000 {method "append® of "list" objects}
1 0.066 .066 -.066 .066 {method "join® of "str" objects}
1 0.038 .038 .340 -.340 run.py:7(fast_encode)
1 0.009 -009 .617 617 run.py:1l(<module>)
1 0.000 -000 .268 .268 run.py:4(slow_encode)

slow: 10.27 sec = 1.12x
fast: 5.34 sec = 1.69x

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

cProfile + RunSnakeRun

[l Run Snake Run:
File View View Type

run.prof

A= |

f@‘ ﬁ @ @ ‘I‘ Percent |Functions j

Name | Cals_LRC..]| Loc

process_slow : B I P e,
process._fast 1 RRPTIREYegl | | Procss-son@deno.py:6 (8,515
<method 'get’ of 'dict' objects:> 2000.., 20... 1.16... 0.00..

<method ‘append’ of 'list' objects> 1000.., 10... 0.70... 0.00.,

fast_encode 1 1 0.10 0.10

<method 'join’ of 'str' objects> 1 1 0.07 0,07

<module > 1 1 0.00 0.00

slow_encode 1 1 0.00 0.00

<module> 1 1 0.00 0.00

_init__ 2 2 0.00 0.00

Encoder 1 1 0.00 0.00

<method 'disable’ of '_Isprof .Profiler' objects> 1 1 0.00 0.00

Callees | all Callees | Callers | All Callers | Source Code |

Name | Cals [RC... [Local |jcal [cum |jcal |Fie | L... | Directory
<met.., 2000.., 20.. 1.16.. 0.00.. 1.6, 0.00.. =~
<| | »f | | o
_int__@demo.py:3[0.000s) 7

2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimization Notice

cProfile in PyCharm

File Edit View Mavigate Code Refactor Run Tools WC5 Window Help

Y. demo.pstat |
Bl = | %1 l& demo.py % | [& run.py x ‘ FY: demo.pstat x
1 demo (1 User

[& demo.py
Mame | Call Count |
[& run.py

i}y External Librari

process_fast 1 5560

Statistics | Call Graph |

<method 'get’ of 'dict’ objects> 20000000
<method ‘append' of 'list' object 10000000
<method ‘join’ of 'str' objects> 1
fast_encode 1

run.py 1
slow_encode

<time time >

demo.py

init

Encoder

- L
C:\Python27\python.exe "C:\Program Files (x26)\JetBrains\PyCharm 4.5.3\helpers\profiler\run profiler.py™ 127.0.0.1 49605 C:/I
Starting cProfile profiler

3low: 10.07 sec
fast: 5.60 sec

Snapshot saved to C:\Users’ — % . PyCharmd4 0 system’ snapshots\demo.pstat

slow: 10.07 sec = 1.10x
fast;: 5.60 sec = 1.77x

ons on Java 7 if firewall is enabled. Command netsh advfirewall set... (5 minutes ago) n/a

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimization Notice

line_profiler results

time: 18.095 s
: demo_Ip.py
: process_slow at line 6
Time Per Hit

10000001 10260548
10000000 33814644
1 4

time: 16.8512 s
: demo_Ip.py
- process_fast at line 13
Time Per Hit

10000001 13684785
10000000 27048146 .
1 312611 31261

slow: 24.32 sec = 2.66X
fast: 25.37 sec = 8.03x

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

% Time Line Contents
@profile
def process_slow(selT):
result = =~
for ch In self.input:
result += self.CHAR_MAP.get(...
return result

% Time Line Contents

@profile
def process_ fast(self):
result = []
for ch In self.input:
result.append(self.CHAR_MAP.get(...

return -join(result)

Optimization Notice

Python Tools GUI example

Dd Performance_20150630(2).vsp - Microsoft Visual Studio
FILE EDIT VIEW PROJECT DEBUG TEAM TOOLS TEST ANALYZE WINDOW HELP

e-o|B-u |- -] P Atach.. -

Performance_20150630(2).vsp + > EailinEhle-ReloyEI0 R0k

Current View: |Summary

|l v

Instrumentation Profiling Report

1210|dx

28.3 seconds of total execution time €

1210)dx3 wea) Jabeuepy Auadold malp sse|D

Hot Path
Function Name
&= python.exe
& run (module)
& run.slow_encode
& run.fast encode

Related Views:

& Functions

Functions With Most Individual Work
Name

demo.Encoder.process_slow
demo.Encoder.process_fast

dict.get

list.append

str.join

slow: 17.40 sec = 1.90x
fast: 12.08 sec = 3.82x

—_—

Y7 Quick Launch (Ctrl+Q)

Performance_20150630(1).vsp

o o | W %

Note:

p = O

Sign in

demo.py

Wallclock time (not CPU)
Report

tlapsed InClusive 11me Elapsed EXCIUsIVe 1ime

A G
100.00 0.00
100.00 0.07

60.13 0.00
39.79 0.00

Exclusive Time %
I S6.49
I 26.94

| 9.12
| 7.00
I 0.39

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

= Show Trimmed C4g

¥ Compare Reports

B3

“@ Export Report Dat
W Save Analyzed Re
Y Filter Report Data
B Toggle Full Scree

W& Set Symbol Paths

Optimization Notice

x

.lB.lCJ|d);'3 SDUBLLLIOLIRH =20UEWLIOl=d LIDL{L‘(d xoqooj .lB.lO'd);'a danlag

Intel® VTune Amplifier example

™ Python Hotspots Hotspots viewpoint (change) ® Intel VTune Amplifier XE 2016

@ Analysis Target Analysis Type| B Collection Log | ¥ Summary | RCLBIGINENY % Caller/Callee *% Top-dowr »
Grouping: |Fur1ctinr1fCaII Stack v| @ CPU Time
Viewing 4 10of 1 » selected stack(s)
100.0% (10.754s of 10.754s)

Function / Call Stack CPU Timew Module

B Encoder@process_slow(self)
* slow_encode(input) = <module: demo.py'Encoder@process_slow(self) - demo.py
Encoder@process_fast(self) run.py!slow_encode(input)+0x1 - run.py:5

#fast_encode(input) .07 8¢ run.py!<module> +0xc - run.py:13

Selected 1 row(s):

Thread |Z|
V] B Running

func@0x1d0013...

e
@ iuk CPU Time
E [C]® CPU Sample
- [¥ICPU Usage
CPU Usage .~ - - - -] M CPU Tlme
4 Fo»

slow: 10.85 sec = 1.19x
fast: 3.30 sec = 1.05x

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® VTune Amplifier — source view

™ Python Hotspots Hotspots viewpoint (change) ® Intel VTune Amplifier XE 2016

4 | M Summary

+ Bottom-up| |+ Caller/Callee||** Top-down Tree

CREERGI N (5 demo.py ¥

L Source] | Assembly | | | | IEI | Assembly grouping: |.ﬁ.ddress

CPU Time E2
s
S5.a ‘ Source ‘

CPU Time

Viewing 4 10of 1 selected stac
100.0% (10.754s of 10.754s)

demo.py!Encod..If) - demo.py
run.py!slow_en..0x1 - run.py:5

run.py!<modul..c - run.py:13

process slow(self):

result = "!

for ch in self.input:

result += self.CHAR MAP. . '1[}.?545_

return result

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® VTune Amplifier: Accurate &
Easy

Line-level profiling detalils:

= Uses sampling profiling technigque

= Average overhead ~1.1x-1.6x (on certain benchmarks)
Cross-platform:

= \Windows and Linux

= Python 32- and 64-bit; 2.7.x, 3.4.x, 3.5.0 versions
Rich Graphical Ul

Supported workflows:
= Start application, wait for it to finish

= Attach to application, profile for a bit, detach

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Low Overhead and Line-Level Info

level

Intel® VTune < Rich GUI viewer Windows Line ~1.1-1.6X
Amplifier Linux
cProfile « Text interactive Any Function 1.3x-5x
(built-in) mode: “pstats”
(built-in)
 GUI viewer:
RunSnakeRun
(Open Source)
 PyCharm
Python Tools < Visual Studio Windows Function ~2x
(2010+)
e Open Source
line_profiler « Pure Python Any Line Up to
 Open Source 10x or more

» Text-only viewer

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

We’'ve Had Success Tuning Our Python Code

* One widely-used web page in our internally set up Buildbot
service: 3x speed up (from 90 seconds to 28)

* Report generator — from 350 sec to <2 sec for 1MB log file
» Distilled version was the base for demo.py

* Internal SCons-based build system: several places sped up 2x
or more

» Loading all configs from scratch tuned from 6 minutes to 3 minutes

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Sign Up with Us to Give the Profiler a
Try & Check out Intel® Software
Development Tools

 Technical Preview & Beta Participation — email us at
scripting@intel.com

 We’'re also working on Intel-accelerated Python (e.g. NumPy/SciPy, etc.),
which is currently in Tech Preview. Sign up!

e Check out Intel Developer Zone — software.intel.com

e Check out Intel® Software Development tools

e Qualify for Free Intel® Software Development tools

e Catch me on the conference if you have some questions,
feature suggestions, etc.

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

mailto:scripting@intel.com
http://software.intel.com/

Free Intel® Software Development Tools

Academic Researcher Student »
Intel Performance Libraries for academic research For current students at degree-granting institutions.

Open Source Contributor »

FOURARN » For developers actively contributing to open source projects.

For use in teaching curriculum.

Visit us at https://software.intel.com/en-us/qualify-for-free-software

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Q&A

... and again:

For Tech Preview and Beta, drop us an email at
scripting@intel.com

* Check out free Intel® software — just google for
“free intel tools” to see if you're qualified

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

mailto:scriptint@intel.com

Performance Starts Here!

Products Availablet*t

Support Price
Model

Commercial Intel® Parallel Studio XE
Developer or : L
) (Compilers, Performance Libraries &
Academic Analyzers)
Researcher y
Intel® Performance Libraries
: Intel® Math Kernel Library
Academic .
Researcher Intel® MPI Library
Intel® Threading Building Blocks
Intel® Integrated Performance Primitives
Student*
Intel® Parallel Studio XE Cluster Edition
Educator*
Open Source Intel® Parallel Studio XE Professional
Contributor* Edition

+Subject to qualification **OS Support varies by product **Single Seat Pricing

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel® Premier $699** -

Support $2949**
Forum only Freel
support

Optimization Notice

	Tuning Python Applications Can Dramatically Increase Performance
	Legal Disclaimer & Optimization Notice
	Agenda
	Why do we need Python optimization?�
	How one finds the code to tune – measuring vs guessing
	Not All Profilers Are Equal�
	Most Profilers – High Overhead, No Line Info
	Example performance hogs
	Python example to profile: demo.py
	Python sample to profile: run.py
	cProfile + pstats UI example
	cProfile + RunSnakeRun
	cProfile in PyCharm
	line_profiler results
	Python Tools GUI example
	Intel® VTune Amplifier example
	Intel® VTune Amplifier – source view
	Intel® VTune Amplifier: Accurate & Easy
	Low Overhead and Line-Level Info
	We’ve Had Success Tuning Our Python Code
	Sign Up with Us to Give the Profiler a Try & Check out Intel® Software Development Tools
	Free Intel® Software Development Tools
	Q & A
	Performance Starts Here!
	Slide Number 25

