
Tuning Python Applications Can
Dramatically Increase Performance

Vasilij Litvinov

Software Engineer, Intel

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

2

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

2

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

3

Why do we need Python optimization?

How one finds the code to tune?

Overview of existing tools

An example

Intel® VTune Amplifier capabilities and comparison

Q & A

Agenda

3

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

4

• Python is used to power wide range of software, including
those where application performance matters

• Some Python code may not scale well, but you won’t know it
unless you give it enough workload to chew on

• Sometimes you are just not happy with the speed of your code

All in all, there are times when you want to make your code run
faster, be more responsive, (insert your favorite buzzword here).

So, you need to optimize (or tune) your code.

4

Why do we need Python optimization?

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

5

• Hard stare = Often wrong

5

How one finds the code to tune –
measuring vs guessing

• Profile = Accurate, Easy

• Logging = Analysis is tedious

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

6

There are different profiling techniques, for example:

• Event-based

• Example: built-in Python cProfile profiler

• Instrumentation-based

• Usually requires modifying the target application
(source code, compiler support, etc.)

• Example: line_profiler

• Statistical

• Accurate enough & less intrusive

• Example: vmstat, statprof

 6

Not All Profilers Are Equal

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

7

Tool Description Platforms Profile
level

Avg. overhead

cProfile
(built-in)

• Text interactive
mode: “pstats” (built-
in)

• GUI viewer:
RunSnakeRun

• Open Source

Any Function 1.3x-5x

Python
Tools

• Visual Studio (2010+)
• Open Source

Windows Function ~2x

PyCharm • Not free
• cProfile/yappi based

Any Function 1.3x-5x (same
as cProfile)

line_profiler • Pure Python
• Open Source
• Text-only viewer

Any Line Up to
10x or more

Most Profilers – High Overhead, No Line Info

7

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
8

Example performance hogs
Task Slow way Faster way

Concatenate
a list

s = ''
for ch in some_lst:
 s += ch

s = ''.join(some_lst)

Reason: concatenating requires re-allocating and copying memory as strings
are immutable

Remove
some value
from a list

while some_value in lst:
 lst.remove(some_value)

while True:
 try:
 lst.remove(some_value)
 except ValueError:
 break

Reason: both in and .remove() have complexity O(n), and slower version
searches the list twice for each removal, so it’s about twice as slow

reason

reason

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

9

class Encoder:
 CHAR_MAP = {'a': 'b', 'b': 'c'}
 def __init__(self, input):
 self.input = input

 def process_slow(self):
 result = ''
 for ch in self.input:
 result += self.CHAR_MAP.get(ch, ch)
 return result

 def process_fast(self):
 result = []
 for ch in self.input:
 result.append(self.CHAR_MAP.get(ch, ch))
 return ''.join(result)

9

Python example to profile: demo.py

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

10

import demo
import time

def slow_encode(input):
 return demo.Encoder(input).process_slow()

def fast_encode(input):
 return demo.Encoder(input).process_fast()

if __name__ == '__main__':
 input = 'a' * 10000000 # 10 millions of 'a'
 start = time.time()
 s1 = slow_encode(input)
 slow_stop = time.time()
 print 'slow: %.2f sec' % (slow_stop - start)
 s2 = fast_encode(input)
 print 'fast: %.2f sec' % (time.time() - slow_stop)

10

Python sample to profile: run.py

No profiling overhead - a
baseline for tools’ overhead
comparison

slow: 9.15 sec = 1.00x
fast: 3.16 sec = 1.00x

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

11

> python -m cProfile -o run.prof run.py
> python -m pstats run.prof

run.prof% sort time
run.prof% stats
Tue Jun 30 18:43:53 2015 run.prof

 30000014 function calls in 15.617 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 9.597 9.597 10.268 10.268 demo.py:6(process_slow)
 1 3.850 3.850 5.302 5.302 demo.py:12(process_fast)
 20000000 1.267 0.000 1.267 0.000 {method 'get' of 'dict' objects}
 10000000 0.790 0.000 0.790 0.000 {method 'append' of 'list' objects}
 1 0.066 0.066 0.066 0.066 {method 'join' of 'str' objects}
 1 0.038 0.038 5.340 5.340 run.py:7(fast_encode)
 1 0.009 0.009 15.617 15.617 run.py:1(<module>)
 1 0.000 0.000 10.268 10.268 run.py:4(slow_encode)

cProfile + pstats UI example

11

slow: 10.27 sec = 1.12x
fast: 5.34 sec = 1.69x

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

12

cProfile + RunSnakeRun

12

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

13

13

cProfile in PyCharm

slow: 10.07 sec = 1.10x
fast: 5.60 sec = 1.77x

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

14

Total time: 18.095 s

File: demo_lp.py

Function: process_slow at line 6

Line # Hits Time Per Hit % Time Line Contents

==

 6 @profile

 7 def process_slow(self):

 8 1 14 14.0 0.0 result = ''

 9 10000001 10260548 1.0 23.3 for ch in self.input:

 10 10000000 33814644 3.4 76.7 result += self.CHAR_MAP.get(...

 11 1 4 4.0 0.0 return result

Total time: 16.8512 s

File: demo_lp.py

Function: process_fast at line 13

Line # Hits Time Per Hit % Time Line Contents

==

 13 @profile

 14 def process_fast(self):

 15 1 7 7.0 0.0 result = []

 16 10000001 13684785 1.4 33.3 for ch in self.input:

 17 10000000 27048146 2.7 65.9 result.append(self.CHAR_MAP.get(...

 18 1 312611 312611.0 0.8 return ''.join(result)

line_profiler results

14

slow: 24.32 sec = 2.66x
fast: 25.37 sec = 8.03x

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

15

Python Tools GUI example

15

Note:
Wallclock time (not CPU)

slow: 17.40 sec = 1.90x
fast: 12.08 sec = 3.82x

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

16

Intel® VTune Amplifier example

16

slow: 10.85 sec = 1.19x
fast: 3.30 sec = 1.05x

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

17

Intel® VTune Amplifier – source view

17

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

18

Line-level profiling details:

 Uses sampling profiling technique

 Average overhead ~1.1x-1.6x (on certain benchmarks)

Cross-platform:

 Windows and Linux

 Python 32- and 64-bit; 2.7.x, 3.4.x, 3.5.0 versions

Rich Graphical UI

Supported workflows:

 Start application, wait for it to finish

 Attach to application, profile for a bit, detach

Intel® VTune Amplifier: Accurate &
Easy

18

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

19

Low Overhead and Line-Level Info
Tool Description Platforms Profile

level
Avg. overhead

Intel® VTune
Amplifier

• Rich GUI viewer Windows
Linux

Line ~1.1-1.6x

cProfile
(built-in)

• Text interactive
mode: “pstats”
(built-in)

• GUI viewer:
RunSnakeRun
(Open Source)

• PyCharm

Any Function 1.3x-5x

Python Tools • Visual Studio
(2010+)

• Open Source

Windows Function ~2x

line_profiler • Pure Python
• Open Source
• Text-only viewer

Any Line Up to
10x or more

19

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

20

• One widely-used web page in our internally set up Buildbot
service: 3x speed up (from 90 seconds to 28)

• Report generator – from 350 sec to <2 sec for 1MB log file

• Distilled version was the base for demo.py

• Internal SCons-based build system: several places sped up 2x
or more

• Loading all configs from scratch tuned from 6 minutes to 3 minutes

We’ve Had Success Tuning Our Python Code

20

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

21

• Technical Preview & Beta Participation – email us at
scripting@intel.com

• We’re also working on Intel-accelerated Python (e.g. NumPy/SciPy, etc.),
which is currently in Tech Preview. Sign up!

• Check out Intel Developer Zone – software.intel.com

• Check out Intel® Software Development tools

• Qualify for Free Intel® Software Development tools

• Catch me on the conference if you have some questions,
feature suggestions, etc.

21

Sign Up with Us to Give the Profiler a
Try & Check out Intel® Software
Development Tools

mailto:scripting@intel.com
http://software.intel.com/

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
22

Free Intel® Software Development Tools

Intel Performance Libraries for academic research

Visit us at https://software.intel.com/en-us/qualify-for-free-software

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

… and again:

• For Tech Preview and Beta, drop us an email at
scripting@intel.com

• Check out free Intel® software – just google for
“free intel tools” to see if you’re qualified

23

Q & A

mailto:scriptint@intel.com

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

24

Performance Starts Here!

24

You are a: Products Available++ Support
Model

Price

Commercial
Developer or
Academic
Researcher

Intel® Parallel Studio XE
(Compilers, Performance Libraries &
Analyzers)

Intel® Premier
Support

$699** -
$2949**

Academic
Researcher+

Intel® Performance Libraries
Intel® Math Kernel Library
Intel® MPI Library
Intel® Threading Building Blocks
Intel® Integrated Performance Primitives

Forum only
support

Free! Student+

Intel® Parallel Studio XE Cluster Edition
Educator+

Open Source
Contributor+

Intel® Parallel Studio XE Professional
Edition

+Subject to qualification ++OS Support varies by product **Single Seat Pricing

	Tuning Python Applications Can Dramatically Increase Performance
	Legal Disclaimer & Optimization Notice
	Agenda
	Why do we need Python optimization?�
	How one finds the code to tune – measuring vs guessing
	Not All Profilers Are Equal�
	Most Profilers – High Overhead, No Line Info
	Example performance hogs
	Python example to profile: demo.py
	Python sample to profile: run.py
	cProfile + pstats UI example
	cProfile + RunSnakeRun
	cProfile in PyCharm
	line_profiler results
	Python Tools GUI example
	Intel® VTune Amplifier example
	Intel® VTune Amplifier – source view
	Intel® VTune Amplifier: Accurate & Easy
	Low Overhead and Line-Level Info
	We’ve Had Success Tuning Our Python Code
	Sign Up with Us to Give the Profiler a Try & Check out Intel® Software Development Tools
	Free Intel® Software Development Tools
	Q & A
	Performance Starts Here!
	Slide Number 25

