Методология разработки прикладного или специализированного ПО на базе кибериммунного подхода

Иллюстрация применения для модели дрона-доставщика

Сергей Соболев

Старший архитектор по информационной безопасности, KasperskyOS Community Development, «Лаборатория Касперского»

План

Зачем?

Кибериммунность

Архитектура кибериммунного дрона и политики безопасности

Проблемы разработки

- Безопасность по умолчанию
- Нет требования нет задачи
- Нефункциональное требование...
- Недостаток экспертизы
- Высокая стоимость специалистов

Проблемы кода

- Сложность решений
- Огромная кодовая база
- Высокая связность
- Чужой код
- Частые обновления
- Легаси
- Множество уязвимостей
- Вероятность НДВ
- Вероятность вредоносного кода

Разработка

- Прозрачная методология Secure by Design, не требующая высоких ИБ-компетенций
- Процесс, ориентированный на компетенции членов команды

Код

- Понятные архитектурные требования
- Шаблоны проектирования
- Безопасность «из коробки»*

 *В случае использования

 KasperskyOS
- Обоснованное сокращение затрат на анализ и тестирование защищенности

Методология разработки безопасных решений

KasperskyOS

Пожалуй, лучший инструмент для разработки кибериммунных решений

но не единственный

План

Зачем?

Кибериммунность

Архитектура кибериммунного дрона и политики безопасности

— это полноценная методология, содержащая весь набор атрибутов (дисциплины, практики и методы)

Как построить решение, которому можно доверять, из компонентов, большинству из которых доверять нельзя?

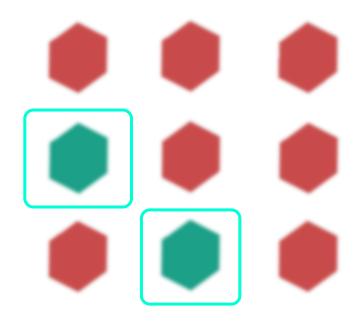
— Как?

- Требования к архитектуре
- 2 Требования к процессу

• Архитектура

Secure by Design:

Система должна быть спроектирована так, чтобы быстро обосновать ее безопасность


Три фундаментальных принципа:

- Изоляция
- Контроль
- Минимизация ТСВ*

• Архитектура

Вместо анализа и противостояния огромной поверхности атаки заботимся о небольшой поверхности защиты

2 Процесс

- Концепция безопасности продукта
- Цели и предположения безопасности
- 3 Архитектура
- Разработка и тестирование
- Моделирование угроз
- 6 Верификация

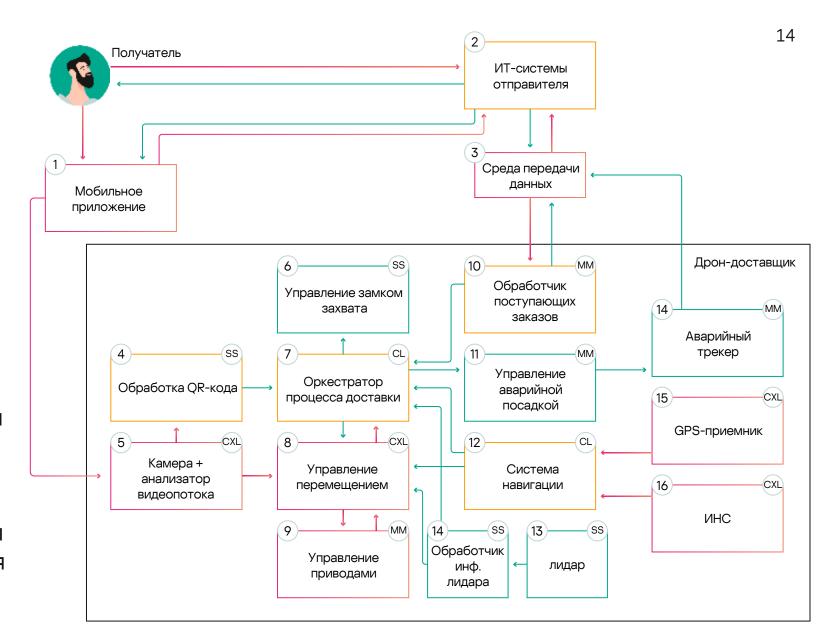
«Гибкость в процессе, жесткость в артефактах»

План

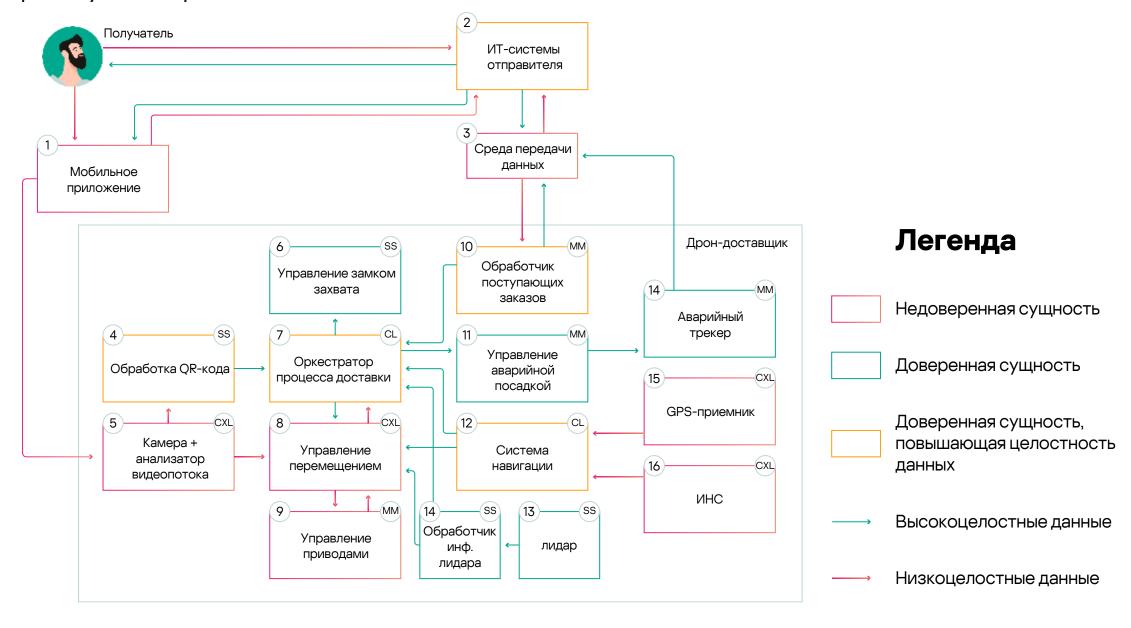
Зачем?

Кибериммунность

Архитектура кибериммунного дрона и политики безопасности _____ Кибериммунный дрон-доставщик

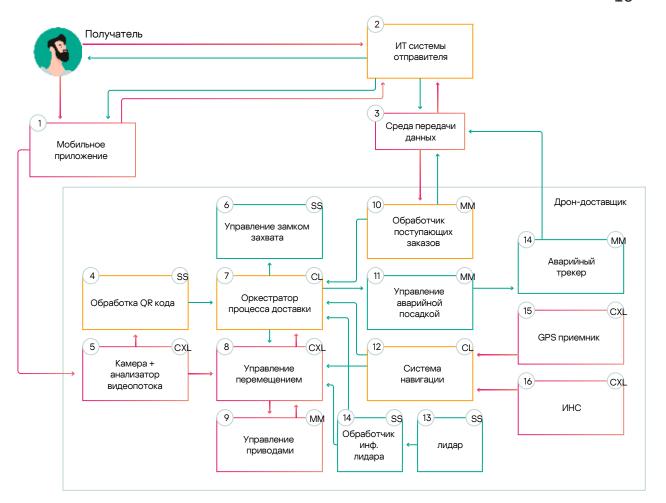

Цели безопасности

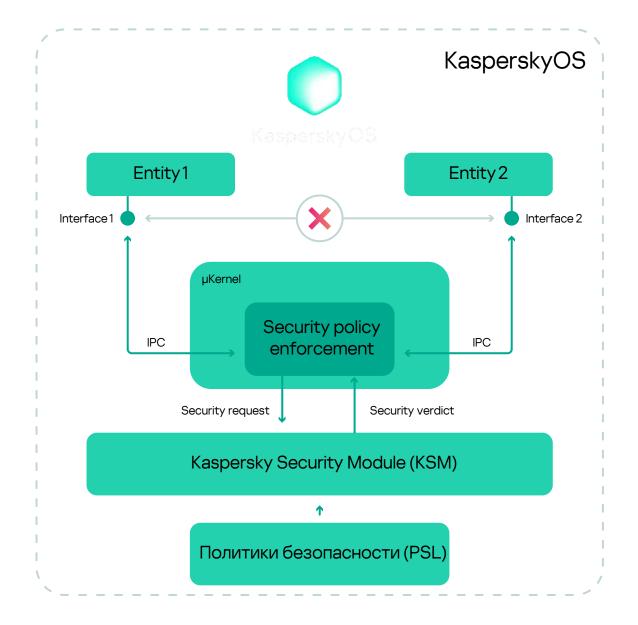
- 1. Только аутентичные и авторизованные получают заказ
- 2. Для полета используются только разрешенные для полетов районы и эшелоны
- 3. ИТ-система отправителя в любой ситуации имеет достоверную информацию о положении дрона 4. На маршруте дрон всегда находится на безопасном расстоянии

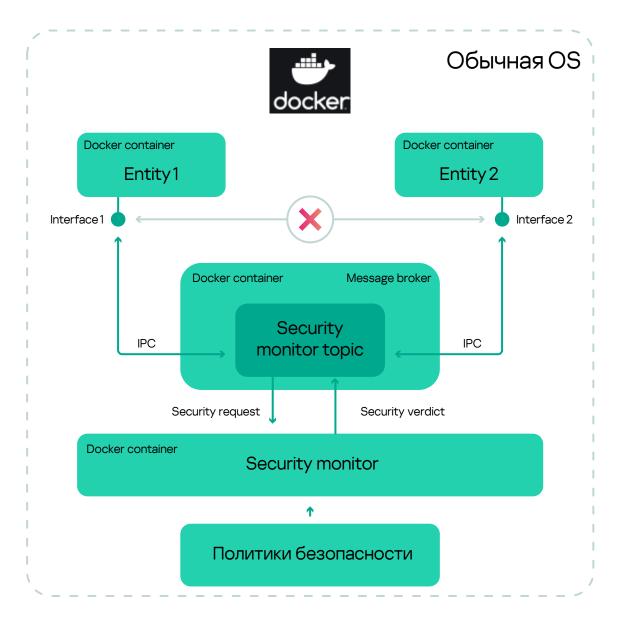

Предположения безопасности

от стационарных объектов

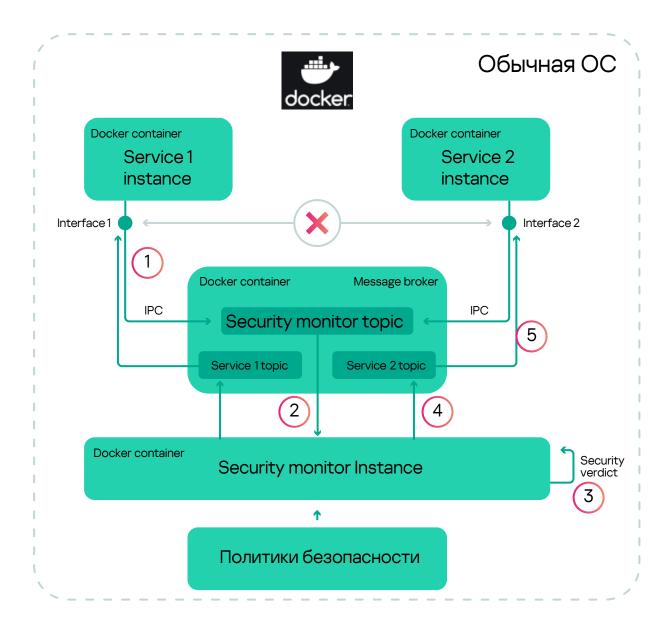
- 1. ИТ-системы отправителя защищены
- 2. Мобильное приложение получателя нельзя считать доверенным


Кибериммунный дрон-доставщик


Кибериммунный дрон-доставщик


Иллюстрация обоснования уровня доверия сущностей

Цель Безопасности	Сущность	Уровень доверия	Обоснование
Для полета используются только разрешенные для полетов районы и эшелоны	Система навигации	Доверенная, повышающая целостность данных	Задача системы навигации собират данные от GPS и ИНС, и повышать целостность этих данных для дальнейшего использования в системе управления перемещени и оркестрацией процесса доставки Также система навигации будет отвечать за компенсацию ошибки ИНС. Т.к. система навигации отвечает за позиционирование в нашей системе, она должна быть доверенной, иначе мы не сможем достичь ЦБ 2 и 3. Т.к. она работает с низкоцелостных GPS данными, она должна быть «желтой» - повышающей целостно данных - сущностью.



Продуктовый кибериммунитет на KasperskyOS, а учиться проектировать можно и на контейнерах

Последовательность передачи сообщений Service1 -> Service2

Итоги

Методология кибериммунности предлагает конкретные методы и практики для каждого этапа жизненного цикла разработки ПО

- Конструктивная безопасность реализуется для обеспечения целей безопасности
- Только такой код переводится в разряд доверенного, без которого достижение целей безопасности невозможно
- Есть способы качественной оценки объема доверенного кода на уровне архитектуры системы
- Предложенная архитектура дрона-доставщика обеспечивает достижение выбранных целей безопасности без необходимости делать бОльшую часть кода доверенной
- Кибериммунный подход к разработке универсален и не зависит от конкретных технологий и инструментов. Он снижает риски эксплуатации уязвимостей.
- Кибериммунный подход следует изучать и внедрять для разработки прикладного и специализированного ПО

Спасибо!

Обучение кибериммунному подходу к разработке

https://t.me/learning_cyberimmunity

Дополнительная информация по теме (теория, задачи, решения)

https://kas.pr/ba1m

Сергей Соболев

Старший архитектор по информационной безопасности, KasperskyOS Community Development

Sergey.P.Sobolev @kaspersky.com

