
LLVM Based Profile Guided Optimization

For Mobile Devices

LLVM COMPILERS TEAM

Authors: Yakushkin Sergey

Kosov Pavel

2

Agenda

• Description of profile-guided optimization (PGO)

• PGO implementation details in different compilers

• PGO related works and researches

• Ways for PGO improvement

3

Huawei

• Big amount of mobile devices (OS Android)

• Strong competition demands develop best solution for improving

user experience

• PGO is a one of possible ways for such improvement

4

Description of PGO

Also known as Feedback Driven Optimization

It is not an optimization, it is an approach.

Compiler use data about real cases of program using

Ways to get profile data:

- Instrumentation

- Sampling

5

Instrumentation (in LLVM)

Source

code

Instrumented program
Profile data

Optimized program

1 2

3

1 – Compilation with insertion of counters (fprofile-generate)

2 – Program execution. Creation of file with profile data (profdata file)

3 – Compilation with profdata file (fprofile-use)

6

Instrumentation (in LLVM)

Code insertion:

1) Counters:

1.1) Add to entry point

1.2) Calculation of minimal spanning tree (MST)

1.3) Add counters to edges which are not in MST

2) Probes for indirect call addresses

3) Probes for functions parameter (only for memcpy / memmove /

memset)

7

Sampling (in LLVM)

Source

code

Program with debug

symbols Profile data

Optimized program

1 2

3

1 – Compilation with debug information

2 – Program execution with profiler (e.g perf for Linux), creation of profdata file

3 – Compilation with profdata file (fprofile-use)

8

Sampling

• Profiler stops the program with user-provided frequency (default

1000 Hz for perf)

• Collects info using hardware counters

• Map collected information to current instruction of profiled

program

Profiler can collect a lot of different information: CPU cycles,

instructions count, cache misses, context switching etc.

9

Instrumentation vs Sampling

Advantages of instrumentation:

- Accuracy, determinism

- Ability to determine indirect call addresses and functions

parameters values

Advantages of sampling:

- Low overhead

- Ability to collect information from hardware counters

10

Comparison of PGO implementation with
MSVC++

MSVC++ creates different counters set for each caller

Func1

TestFuncFunc2

Func3
Counters

set

Clang

Func1

TestFuncFunc2

Func3

Counters set for

Func2

MSVC++

Counters set for

Func3

Counters set for

Func1

11

Comparison of PGO implementation with
IntelC++ Compiler (ICC)

ICC with instrumentation allows to get following data:

- CPU cycle inside functions and loops

- Iterations count for loops (maximum, minimum, average)

Also ICC allow to use fine-grained setup of instrumentation level

12

Projects and Researches

Projects:

- BOLT (Facebook). Post-link optimizer application's code layout.

Use Call-Chain Clustering algorithm (improved Pettis-Hansen).

- Propeller (Google). Enhanced BOLT for using in distributed

systems and with lower memory foot-print

Researches:

- GOA (grant DARPA). Optimizer for power-efficiency

- CodeStitcher (grant Huawei, IBM). An inter-procedural basic

block code layout optimizer

13

Ways for PGO improvement in LLVM

• Reduce number of counters by improvement control-dependence

information analysis

• Enhance heuristics of Call-Chain Clustering for reducing number

of instructions cache misses

• Add profiling of hot paths (bbvectors) in functions:

1

2 3

4

Path 1-2-4-5-7 was taken N times

Path 1-3-4-6-7 was taken M times

...
5 6

7

14

Ways for PGO improvement in LLVM

• Collect info for each caller about bbvectors that were taken

Optimizations which will benefit from bbvectors info

• Partial inlining

• Functions specialization

• Link time code layout

• Code size reducing (by applying different sets of optimization

for cold and hot functions)

15

Ways for PGO improvement in LLVM

• Reduce number of data cache misses

• Setup level of instrumentation

• Profile CPU cycles

• Use profile data in next optimizations: vectorization, code size

reducing, loop unrolling, loop peeling etc.

List of possible improvements on LLVM official site:

https://llvm.org/OpenProjects.html

Thank you

Contacts:
Yakushkin.Sergey@Huawei.com
Kosov.Pavel@Huawei.com

mailto:Yakushkin.sergey@Huawei.com
mailto:Kosov.pavel@Huawei.com

