
www.huawei.com

Security Level:

HUAWEI TECHNOLOGIES CO., LTD.

CodeBot
A SMART WEAPON to rescue

developers from ANNOYING

CODING PROCESSES

Author/ Email: Guangtai Liang (梁广泰) / liangguangtai@huawei.com

Version: V2.0 (20191130)

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 2

Local Dev Environment

Release Branches

Master Branch

Remote Feature Branch

Back-
porting

CodeBot Overview

Code Review
(static code check）

Code
Committing

Code Defect Detection

& Fixing Service

Code Search Service

Code Completion

Service
Software Composition

Analysis Service

Smart Code Branch

Synchronization Service

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 3

Local Dev Environment

Release Branches

Master Branch

Remote Feature Branch

Back-
porting

CodeBot Overview

Code Review
(static code check）

Code
Committing

Code Defect Detection

& Fixing Service

Code Search Service

Code Completion

Service
Software Composition

Analysis Service

Smart Code Branch

Synchronization Service

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 4

Smart Code Defect Detection & Fixing Service

Goals

Building an ecosystem for detecting various kinds of defects efficiently and effectively
1. Producing effective results (precision > 90%)
2. Scalable for easily integrating third-party code detectors
3. Integrated with existing working flow (coding, code review, code release)
4. Continuously collect and learn from historical code defects

Data Server

Key Techs

Review
Records

Code
Commits

Commit
Logs

Defect
Warnings

Fix
Suggestions

② Defect Fixing

 Fix Pattern Mining
 Fix Pattern Auto-Applying

 Fix example providing
 Fix code auto-generation
 Interactive code fixing

① Defect Detection

 Defect pattern mining
 Deep/precise/scalable
analysis engine
 Formal approaches:
Theorem proving、abstract
interpretation, symbolic
execution and etc.
 AI based false positive
reducing

Mined Rules

Rule Mining

Code
Commit

AI Predictors

Learning &
Training AI Models

Rule-Based Defect Detection
and Auto-Fixing

Predictor-Based Defect
Detection and Auto-Fixing

Code Reviewer
Recommendation

Risky Code Recommendation

Recommen
dation

Suggestions

Robot
Review
Results

User
Feedback
Collection

&
Learning

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 5

Local Dev Environment

Release Branches

Master Branch

Remote Feature Branch

Back-
porting

CodeBot Overview

Code Review
(static code check）

Code
Committing

Code Defect Detection

& Fixing Service

Code Search Service

Code Completion

Service
Software Composition

Analysis Service

Smart Code Branch

Synchronization Service

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 6

Smart Code Branch Sync. Service

The Code Syncing Processes are
• huge conflicts (for android P upgrading, 249342 conflict lines) awaiting manual resolution
• labor-intensive and low efficiency (android N/O upgrading costs 800/1200 person-months)
• error-prone
• false merges
• false conflicts

Linux

Existing
Process

Change
Analysis

Code Merge
& Conflict
Resolving

Compiling &
Unit Testing

Screen-
Brightening

Testing

Apk Usability
Testing

Formal
Testing

Feature-Gap
Development

Pain
Points

Key
Features

Code Change
Analysis

Changed
features, APIs, UI

pages, impact
scopes, potential
conflicts and etc.

Labor-
intensive，

low efficiency，
false

negatives

Huge conflicting lines,
tight schedule，

lack of guidance，
uncontrollable quality

Code Conflict
Auto-Resolving

Code conflict hub
construction,

Merge rule mining,
Rule based merge engine,

AI based predictors

Implicit-Conflict
Analysis & Forewarning

False merge identification,
Incomplete merge

identification and etc.

Conflict Prevention

Conflict prediction &
warning,

Clean commits,
Feature-based merge

Unlimited manual testing efforts,
lack of guidance,

Testing blind spots,
inefficient root cause analysis

Lots of code couplings
committed into the git

repo

Diff Analyzer Conflict Auto-Resolver Implicit Conflict Warner Conflict Preventer

HUAWEI Customized Systems
(e.g., EMUI)

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 7

Smart Code Branch Sync. Service

The Code Syncing Processes are
• huge conflicts (for android P upgrading, 249342 conflict lines) awaiting manual resolution
• labor-intensive and low efficiency (android N/O upgrading costs 800/1200 person-months)
• error-prone
• false merges
• false conflicts

Linux

Existing
Process

Change
Analysis

Code Merge
& Conflict
Resolving

Compiling &
Unit Testing

Screen-
Brightening

Testing

Apk Usability
Testing

Formal
Testing

Feature-Gap
Development

Pain
Points

Key
Features

Code Change
Analysis

Changed
features, APIs, UI

pages, impact
scopes, potential
conflicts and etc.

Labor-
intensive，

low efficiency，
false

negatives

Huge conflicting lines,
tight schedule，

lack of guidance，
uncontrollable quality

Code Conflict
Auto-Resolving

Code conflict hub
construction,

Merge rule mining,
Rule based merge engine,

AI based predictors

Implicit-Conflict
Analysis & Forewarning

False merge identification,
Incomplete merge

identification and etc.

Conflict Prevention

Conflict prediction &
warning,

Clean commits,
Feature-based merge

Unlimited manual testing efforts,
lack of guidance,

Testing blind spots,
inefficient root cause analysis

Lots of code couplings
committed into the git

repo

Diff Analyzer Conflict Auto-Resolver Implicit Conflict Warner Conflict Preventer

HUAWEI Customized Systems
(e.g., EMUI)

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 8

OOPSLA-2019 Work:

IntelliMerge: A Refactoring-Aware

Software Merging Technique

Bo Shen1, Wei Zhang1, Haiyan Zhao1, Guangtai Liang2, Zhi Jin1, and

Qianxiang Wang2

1Peking University, China
2Huawei Technologies Co. Ltd, China

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 9

Software/Program/Code Merging

Merging happens frequently in version control systems

(like)and branch-based workflow.

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 10

Merging Techniques

Merging

Technique

Unstructured

Structured

Semi-

structured

GitMerge1 (Text-line based)

Category Example

AutoMerge3 (AST based) OOPSLA2018

OOPSLA2017jFSTMerge2 (Tree based)

1. https://git-scm.com/docs/git-merge
2. Guilherme Cavalcanti, Paulo Borba, and Paola Accioly. 2017. Evaluating and improving semistructured
merge. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 59.
3. Fengmin Zhu and Fei He. 2018. Conflict resolution for structured merge via version space algebra.
Proceedings of the ACM on Programming Languages 2, OOPSLA (2018), 166.

https://git-scm.com/docs/git-merge

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 11

When Merging Meets Refactoring (1/2)

Refactoring: a transformation to the program (e.g., Rename/Move Field and Extract/Inline Method)

that improves its internal design without changing its externally observable behavior [Fowler

2002].

Refactorings become increasingly common, but they bring trouble to
the existing merging approaches, especially to the most widely-used
GitMerge.

Google

Huawei

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 12

When Merging Meets Refactoring (2/2)

Challenges to correctly merge refactorings:

 Matching: refactoring often leads to mismatching in existing

merging approaches.

 Consistency: refactoring consists of changes across many places,

which should be merged consistently.

 Comprehension: refactoring history is often unavailable when

merging programs or resolving conflicts.

According to a recent study1 on about 3,000 Java projects from Github:

(1) >22% merge conflicts are related with refactorings;

(2) refactorings-involved conflicts are more complex and difficult to

resolve.

1. Mehran Mahmoudi, Sarah Nadi, and Nikolaos Tsantalis. 2019. Are Refactorings to Blame? An Empirical Study of
Refactorings in Merge Conflicts. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 151–162

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 13

Refactoring-Aware Merging1

Motivation:

Matching the changed code correctly is the basis of a better

merging algorithm.

Approach:

Match refactored code based on the graph representation of

object-oriented programs.

Target:

Better merging results, fewer but more reasonable conflicts.

1. Danny Dig, Tien N Nguyen, Kashif Manzoor, and Ralph Johnson. 2006b. MolhadoRef: a refactoring-aware
software configuration management tool. In Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications. ACM, 732–733

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 14

Overview of IntelliMerge1

The graph-based and refactoring-aware semi-structured
merging tool for Java.

1 https://github.com/Symbolk/IntelliMerge

https://github.com/Symbolk/IntelliMerge

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 15

Experiments

We collect 1, 070 merge scenarios that contain refactoring-related conflicts, from the

history of 10 popular and active Java open-source projects hosted on Github.

To evaluate different merging techniques on refactorings, we compare:

 IntelliMerge: the proposed graph-based semi-structured merging tool

 GitMerge: the most widely-used unstructured merging tool

 jFSTMerge: the state-of-the-art tree-based semi-structured merging tool

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 16

Evaluation on Merged Part

Compare auto-merged part with the manually-committed code (at the

merge commit):

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 17

Evaluation on Conflicting Part

• Both semi-structured approaches significantly reduce conflicts
comparing with unstructured GitMerge.

• Comparing with GitMerge, IntelliMerge reduces the number of conflict
blocks by 58.90% and the lines of conflicting code by 90.98%.

• Comparing with jFSTMerge, IntelliMerge further reduces the number of
merge conflicts by 11.84% and the lines of conflicting code by 78.38%.

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 18

Conclusion and Future Work

• We propose an algorithm that merges the program in

the form of graph to match and merge refactored code.

• We implement IntelliMerge, which is open-source:

https://github.com/Symbolk/IntelliMerge

• What we are doing based on the PEG:

• Exploiting relations and dependencies between

conflict blocks to assist developers in manually

resolving a series of related conflicts;

• Automatically checking the syntactic consistency

between merged program elements.

https://github.com/Symbolk/IntelliMerge

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 19

Local Dev Environment

Release Branches

Master Branch

Remote Feature Branch

Back-
porting

CodeBot Overview

Code Review
(static code check）

Code
Committing

Code Defect Detection

& Fixing Service

Code Search Service

Code Completion

Service
Software Composition

Analysis Service

Smart Code Branch

Synchronization Service

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 20

Software Composition Analysis Service
Software Composition Analysis tool that scans your code for open source licenses and
vulnerabilities, and gives you full transparency and control of your software products
and services, avoiding the license related violations

• Accurate Origins
Analysis: Build the BIG

knowledge base contains all
open source repositories;
Accurate and scalable code
clone detection tech;

Key Techs

• Precise Results: Apply AI,

data-driven solutions to
automatically eliminate
false-positives.

• Lightning Fast Scans:
Apply revolutionary search
engine techniques to enable
the lightning fast scans (70
files/s)

• Ease of use: Users can

easily scan, audit, generate a
variety of reports; support CI
integration; flexible
deployment

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 21

Local Dev Environment

Release Branches

Master Branch

Remote Feature Branch

Back-
porting

CodeBot Overview

Code Review
(static code check）

Code
Committing

Code Defect Detection

& Fixing Service

Code Search Service

Code Completion

Service
Software Composition

Analysis Service

Smart Code Branch

Synchronization Service

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 22

Smart Code Completion Service

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 23

Local Dev Environment

Release Branches

Master Branch

Remote Feature Branch

Back-
porting

Questions?

Code Review
(static code check）

Code
Committing

Code Defect Detection

& Fixing Service

Code Search Service

Code Completion

Service
Software Composition

Analysis Service

Smart Code Branch

Synchronization Service

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 24

Backups

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 25

Program Element Graph (PEG)

[Definition] Program Element Graph: a labeled, weighted, and directed graph G =

(V , E) that encodes the program structure and data&control flow above the

field/method level.

Vertex Set V: program elements (e.g., class/method/field declaration), consists of

terminal and non-terminal vertices.

Edge Set E: relation and interaction between program elements (e.g., extend, method

invocation, field access)

The implementation of PEG is language-specific, in ours for Java 8:

• Supported program elements:
Project, Package, CompilationUnit, Class, Enum, Annotation, Interface, Field, Constructor,

Method, EnumConstant, AnnotationMember, InitializerBlock, etc.

• Supported relation types:
contain, import, extend, implement, define, declare, read, write, call, instantiate, etc.

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 26

Code to Graph

Input: the left and right commit (HEAD commits of two branches to be merged)

Output: the PEGs for the left/right/base version, respectively

1. Find the base: use the nearest common ancestor (NCA) commit as the base version;

2. Collect files to analyze: compare the left/right version with the base version to find

diff files and imported files;

3. Parse the code: parse the code in each source file sets into abstract syntax trees

(ASTs);

4. Form the vertices: extract program elements from AST to form vertices;

5. Build the edges: extract hierarchical relations and interactions by analyzing the

statements inside bodies of terminal verticess.

Δ

Δ

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 27

Code to Graph (2)

The necessary information are captured for matching:
Vertex Attributes:

• type (v) = the type of v, same as the type of the corresponding AST node

• signature (v) = the fully-qualified name of v, e.g. edu.pku.intellimerge.util.SourceRoot

• source (v) = the body of terminal vertices or the original declaration of non-terminal

vertices, which will be merged textually

Edge Attributes:

• type (e) = the relation type that e represents

• weight (e) = the times that one type of relation appears between two vertices

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 28

Matching

to
p

-d
o

w
n

b
o

tt
o

m
-u

p

Top-down: Following the hierarchical order, match vertices by hashed vertex signature.

Bottom-up: From terminal vertices to non-terminal vertices, match vertices according

to the matching-degree.

Basic insight: A large part of the code between base version and left/right version
remain unchanged in most cases.

Target:
to match program elements before and after refactoring (and other) changes

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 29

Matching (2)

Matching-degree estimates the similarity of two vertices:
• For terminal vertices: weighted_average(signature similarity, body tree similarity,

context edges similarity)
• For non-terminal vertices: weighted_average(signature similarity, children list

similarity, context edges similarity)

Basic assumption: Matched program elements must have the same

type, and do the similar things in the program.

b
o

tt
o

m
-u

p

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 30

Matching (3)

Instead of explicitly detecting each type of refactorings, we categorize them

into two categories according to their effect:

Basic assumption: Matched program elements must have the same

type, and do the similar things in the program.

Divide and conquer for each type of vertices:

1. For 1-to-1 matching: match vertices with biparitie maximum matching;

2. For m-to-n matching: match vertices by joining/splitting the context of

multiple vertices.

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 31

Merging

Input: the matched vertices triple: <left vertex, base vertex, right vertex>

(each of them can be optional but not all of them).

e.g.:

• Added: <a, NULL, NULL>

• Deleted: <NULL, b, b>

• Modified: <d, c, c>

Output: the merged code files with possible conflict blocks embedded

1. Locate all vertices of type cut (CompilationUnit, which corresponds to the

source code file);

2. Traverse hierarchical relation edges (e.g. define/contain) with the cut
vertex as the source vertex, merge target vertices recursively;

3. Merge vertex components following the basic rules of three-way merging:

• <a, NULL, NULL>  a, <a, NULL, a>  a

• <NULL, b, b>  NULL, <NULL, b, c>  conflict!

• <d, c, c>  d, <d, c, e>  conflict!

