IVANNIKOV ISP RAS OPEN CONFERENCE

Large Eddy Simulation of turbulent circular jet using OpenFOAM

E.A. Kalaushina ^{1,2}, A.A. Smirnovsky ^{1,2}, D.S. Brovin ¹, E.V. Kolesnik ²

¹STR Group Inc.

² Peter the Great St.Petersburg Polytechnic University

Motivation

- Siemens technology (based on chemical vapor deposition) is widely used for polysilicon production
- Silicon containing gas mixture is supplied by turbulent jet
- Heat exchange and mass transport are determined by turbulent fluctuations
- Numerical modeling is required to improve reactor characteristics

Polysilicon deposition reactor

The experimental set-up and computational domain

T. Djeridane, M. Amielh, F. Anselmet, and L. Fulachier, "Velocity nearfield of variable density turbulent jets", International Journal of Heat and Mass Transfer 39 (1996) 2149-2164

Turbulent Inlet boundary condition

$$U^{n} = (1-\alpha)U^{n-1} + \alpha \left(U_{j} + r \cdot s \cdot C \cdot U_{j}\right)$$

$$Re = D_i U/v = 21000$$

$$m = U_e/U_i = 0.075$$

Mathematical model and numerical method

1. Models

- LES WALE model
- Implicit LES (ILES) approach

2. Codes

- OpenFOAM (PIMPLE solver from incompressible group)
- SINF/Flag-S (original version of the implicit fractionalstep method to advance in physical time)
- 3. Numerical schemes: LUST, QUICK, Linear Upwind, Linear
- 4. The approximation of the time derivative was carried out with the second-order scheme "backward"

Mesh

cross section near outlet

longitudinal section near inlet

- 1. Original mesh: 1.3 mln cells Typical cell size ~ 0.004 m, 22 cells/ D_i
- 2. Fine mesh: 11 mln cells Typical cell size ~ 0.002 m, 40 cells/ D_{i}
- 3. Coarse mesh: 0.2 mln cells Typical cell size \sim 0.08 m, 12 cells/ D_i

Instantaneous and averaged distributions of velocity magnitude

Instantaneous and averaged distributions of velocity magnitude

Instantaneous and averaged distributions of velocity magnitude

Comparison with the experimental data

The distribution of longitudinal component of the averaged velocity along the jet axis

Comparison with the experimental data

The distribution of the RMS-fluctuation of longitudinal velocity component along the jet axis

Grid sensitivity

The distribution of the RMS-fluctuation of longitudinal velocity component along the jet axis

- · Experiment Djeridane et al.
- Fine mesh OpenFOAM
- --- Fine mesh SINF/Flag-S
- Original mesh OpenFOAM
- --- Original mesh SINF/Flag-S
- Combined mesh OpenFOAM
- Coarse mesh OpenFOAM

Influence of time step

Fine mesh

$$-\Delta \tau = 0.46$$
, $CFL_{x/Dj=20} = 1.6$

$$-\Delta \tau = 0.23$$
, $CFL_{x/Dj=20} = 0.8$

$$-\Delta \tau = 0.11$$
, $CFL_{x/Di = 20} = 0.4$

$$-\Delta \tau = 0.06$$
, $CFL_{x/Di = 20} = 0.2$

The distribution of longitudinal component of the averaged velocity along the radius in the section $x/D_i = 20$

$$\Delta \tau = \Delta t U_j / D_j = 0.11$$

0.2

Influence of time step

Fine mesh

· Exp. Djeridane et al.

$$-\Delta \tau = 0.46$$
, $CFL_{x/Dj=20} = 1.6$

$$-\Delta \tau = 0.23$$
, $CFL_{x/Dj=20} = 0.8$

$$-\Delta \tau = 0.11$$
, $CFL_{x/Di = 20} = 0.4$

$$-\Delta \tau = 0.06$$
, $CFL_{x/Di = 20} = 0.2$

$$x/D_j = 20$$

Courant number sensitivity

The distribution of the RMS-fluctuation of longitudinal velocity component along the radius in the section $x/D_i = 20$

Influence of numerical scheme

The distribution of the RMS-fluctuation of longitudinal velocity component along the jet axis

Influence of synthetic generator parameters

The distribution of the RMS-fluctuation of longitudinal velocity component along the jet axis

Conclusion

- For accurate modeling of averaged characteristics it is recommended to use original (22 cells/ D_j) or coarse (12 cells/ D_j) mesh
- For accurate modeling of fluctuation characteristics it is recommended to use fine (40 cells/ D_i) mesh
- > It is possible to use time step corresponding $CFL_{max} \sim 10$, but it is desirable to achieve CFL < 1 at the main jet region
- > Results obtained by LES WALE and ILES are almost similar
- Influence of considered numerical schemes on the solution is quite small, except linear scheme, which gives non-physical pulsations
- The LUST or QUICK scheme is recommended to use in LES
- ➤ The small solution sensitivity to the synthetic generator parameters was also observed

The longitudinal component of the RMS-fluctuation velocity field for solutions obtained by OpenFOAM (a) and SINF/Flag-s (b)

