g’,ﬂ CEE-SECR

Software Engineering
Conference in Russia

Precise Garbage Collection for C++ with a
Non-Cooperative Compiler

Daniil Berezun

JetBrains

Daniil.Berezun@jetbrains.com

23.10.2014

Context

C++:
@ Manual memory management;
@ Fine-tune using unsafe primitives.

Sometimes GC is desirable:
@ Non-time-critical components;
@ Library interface simplification;
@ Safety requirement.

Library-based approach advantages:
@ Portability;
@ Compiler independence;
@ Separation of managed and non-managed parts.

Garbage Collection

Reference counting:
@ each pointer has a counter;
@ pointer operation overhead,;
@ circular references is a problem;
@ unpredictable deallocation time.

Tracing garbage collection:
@ "useful” objects;
@ root set;
@ reachability;
@ precise / conservative.

v

Precise GC for C++ 23.10.2014 3/16

Conservative vs. Precise GC

Precise:
@ precise pointer identification;
@ can reclaim all unreachable memory.
@ safe.

Conservative: (e.g. Boehm GC)

@ heuristic pointer identification;
@ disadvantages:

e compactification cannot be implemented;
e some "dead” objects may not be collected;
e unsafe.

]
Our GC Features

@ Precise;

@ Safety: nothing can “go wrong” because of the GC;

@ No compiler cooperation is needed;

@ Managed and unmaneged objects can coexist.

Precise GC for C++ 23102014 5/16

Library Interface — Key Primitives

@ Smart pointer class gc_ptr:

‘template <class T> class gc_ptr { ... };

@ Memory allocation template function gc_new:

template <class T , typename ... Types>
gc_ptr<T> gc_new (Types ... types, size t count = 1);
Class * element = new Class (al, ... , an);
// — replaced with ——>
gc_ptr<Class> element =
gc_new<Class, T1, ... , Tn>(al, ... , an);

Precise GC for C++ 23102014 6/16

A W N =

Library Interface — Other Features

@ Pointers "inside” objects:

template <typename F , typename B>
gc_ptr<F> derive (const gc_ptr base, const F x field);

Composite
gc_ptr _|_>p0|nter
base
field
JArray 1,7

23.10.2014

7/16

Library Interface — Non-managed Objects

Managed and unmanaged objects can coexist:

@ References from managed to non-managed objects — OK;

@ References from non-managed to managed objects
require user assistance:
© void register object (void *);
@ void unregister object (void *).

struct strl {

gc_ptr<char> p;
i
/) aoo
strl * s = (strl *) malloc (sizeof(strl));
s—>p = gc_new<char>(10);
register_object(s—>p);

8/16

N oo AW N R

Implementation — Overview

Root

[

live object

Root

live object

| [

live object

Solved problems:

garbage

L

b

@ Root set identification;
@ Constructing and maintaining meta-information;
@ Implementing mark-and-sweep phase.

mark and sweep

Daniil Berezun

Precise GC for C++

23.10.2014

9/16

Implementation — Cooperative Heap

@ Cooperative heap (Doug Lea’s malloc):

@ Distinguish heap pointers from non-heap;
@ Implement efficient sweep phase;

© Maintain mark bit and managed bit.

Precise GC for C++ 23.10.2014 10/16

]
Root Set

@ gc_ptr maintains root set via its constructor / destructor. J

Root stack Program stack
gc_ptr ...
root ™
gc_ptr ...
root l_b
Bottom
Bottom

Precise GC for C++ 23.10.2014 11/16

Meta-information

Meta-information:
© class meta;
© object meta.

gc_ptr

|

Y

4

pointer to | element
class meta count

object

object's meta

Daniil Berezun

Precise GC for C++

offset to the first pointer

offset to the second

class meta

23.10.2014

12/16

Properties

@ Precise;

@ Safety;

@ No compiler cooperation;

@ Managed and unmaneged objects can coexist.

Precise GC for C++ 23.10.2014 13/16

Demonstaration

Precise GC for C++ 23.10.2014 14/16

Limitations

@ 64-bit Linux;

@ Single-thread;

@ Not thread-safety;

@ Time overhead up to an order.

Precise GC for C++ 23.10.2014 15/16

]
Future Work

@ Port to another platforms;

@ Thread-safety;

@ Other garbage collection algorithms;
@ Minimize overhead;

@ Memory leaks detector.

Precise GC for C++ 23.10.2014 16/16

