(155 PIE

Method for Analysis of Code-reuse Attacks

Reverse Engineering of ROP Exploits

Alexey Vishnyakov
Alexey Nurmukhametov
Shamil Kurmangaleev
Sergey Gaisaryan

23 November 2018

ISP RAS

(vishnya@ispras.ru
(oleshka@ispras.ru
(kursh@ispras.ru
(ssg@ispras.ru

= = =

Vulnerabilities by Year

Number (tens of thousands) of new vulnerabilities (CVE) by year

15 -
1.25
1
0.75
0.25 H
i DDDDDH
m#LﬂKOI\OO@OHNmﬂLQOI\
O OO O OO ™ ™™ ™ ™ ™ ~
@OOOOOOOOOOOOOOOOOO
A AN AN AN AN AN AN AN AN AN AN AN AN N AN AN AN A

Source: cvedetails.com/browse-by-date.php 1/19

https://www.cvedetails.com/browse-by-date.php

e Deliberate exploitation of vulnerabilities can lead to information
disclosure, financial losses, or even greater damage

e Big companies perform computer security incidents analysis

e Return-oriented programming (ROP) is an exploitation technique
that can be used in presence of modern operating systems
protections

e The main contribution of our work is to simplify ROP exploits
reverse engineering

2/19

Stack Buffer Overflow

A

argv
S argc
. &
e Buffer Overflow Vulnerability exists D
= Return address
when a program attempts to put i
. . 2
more data in a buffer than it can hold = Old ebp
e Buffer overflow causes a return %
address overwrite o
-
@ Buffer

3/19

Stack Smashing and Executable Space Protection

Stack Smashing:

e Place payload on the stack

e Overwrite return address with a Payload
pointer to the payload

e Execute arbitrary code |:— Payload pointer

Executable Space Protection:
‘Corrupted’ ebp

e Executable space protection
(DEP) marks memory regions as

non-executable

. . Buffer
e In particular, the execution of

malicious code placed on the stack is
forbidden

4/19

Return-to-libc Attack

"/bin/sh"

command

Return-to-libc attack bypasses DEP:

e Overwrite return address with a system address

library function address, for instance,
system ‘Corrupted’ ebp

e Prepare function arguments on the
stack

Buffer

5/19

Address Space Layout Randomization

e Address space layout randomization (ASLR) is an operating
system protection that randomly arranges the address space
positions of key data areas of a process (base of the executable,
stack, heap, dynamic libraries)

e Library function address is unknown before the program load

e Modern ASLR implementations leave some program address space
areas non-randomized:

e In Linux the base of the executable is often left constant
e Some Windows dynamic libraries are loaded at constant offsets

6/19

Return-oriented Programming

e Return-oriented Programming (ROP) is a code-reuse attack that
allows an attacker to bypass DEP in presence of non-randomized
memory areas

e Attacker uses gadgets — code blocks from non-randomized memory
address space

e Each gadget performs some computation (for instance, adds two
registers) and transfers control to the next gadget

e Gadgets are chained together and executed consequently

e Thus, a gadget chain executes a malicious payload

7/19

ROP gadgets

e Gadget is an instruction sequence — in non-randomized executable
memory area — that ends with a control transfer instruction (usually
with ret)

e Because x86 architecture doesn’t require instruction aligning, an
instruction sequence can contain a gadget that is not present in
original program code*

£7c7070000000£9545c3 — test edi, 0x7 ;
setnz BYTE PTR [ebp-0x3d]
c7070000000£9545¢c3 — mov DWORD PTR [edi], 0xf000000 ;
xchg ebp, eax ; inc ebp ; ret

e Gadget addresses are placed on the stack starting from the return
address so that the first gadget transfers control to the second one,
the second one — to the third one, and so on

*Jonathan Salwan. An introduction to the Return Oriented Programming and ROP chain generation 8/19

http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf

ROP Chain Example

Write memValue to memAddr

Higher memory

4th gadget address

3rd gadget address

mov [edx], eax ; ret

memAddr

2nd gadget address

pop edx ; ret

memValue

1st gadget address

"z Previous return address location
pop eax ; ret

9/19

ROP Chain is a Program

e ROP chain is a program for a virtual machine defined by an
executable

e Stack pointer acts as a program counter

e Instruction opcodes (gadget addresses) and operands are placed on

the stack
Virtual machine . .
)) 4th gadget address Real instructions:
instructions:
mov [edx], eax 3rd gadget address mov [edx], eax ; ret
memAddr

mov edx, memAddr
2nd gadget address pop edx ; ret

memValue

mov eax, memValue
1st gadget address pop eax ; ret

10/19

Problem Definition

Given a binary ROP chain, we should:

e Restore a gadget chain
e Determine semantics of each gadget
e Restore function calls with arguments

e Detect system calls

11/19

Gadget Frame

e In order to split ROP chain into
gadgets, we define a gadget frame
similar to x86 stack frame

e Frame size Next gadget

FrameSize = 16

‘Loaded’ eax

e Next gadget address
NextAddr = [ESP + 4] pop eax ; ret 8

12/19

Gadget Semantic Definition

e Gadget type is defined semantically by a postcondition — a boolean
predicate that must always be true after executing the gadget®

e MoveRegG: OutReg < InReg
e LoadConstG: OutReg < [SP + Offset]

e Set of gadget types is an instruction set architecture (ISA)

e Gadget function is described with a set of parameterized types that
satisfy the gadget

e Gadget classification determines a set of possible types and

parameters

PUSH EAX

POP EBX MoveRegG: EBX < EAX

POP ECX LoadConstG: ECX < [ESP + 0]
RET

*Schwartz, Edward J., Thanassis Avgerinos, and David Brumley. " Q: Exploit Hardening Made Easy.” USENIX
Security Symposium. 2011. 13/19

Gadget Classification

e We perform classification after analysing effects of gadget execution
on different inputs

e Gadget instructions are translated into the intermediate
representation*
e Then the interpretation of intermediate representation starts
e All memory and register accesses are tracked
e Initial values of registers and memory areas are generated randomly
e As a result of interpretation, the initial and final values of registers
and memory will be obtained

e We perform several more interpretations with different inputs and

gather a list of types and parameters with true postconditions for all
executions

*Padaryan V.A., Soloviev M.A., Kononov A.l. "Modeling operational semantics of machine instructions (in
Russian).” Trudy ISP RAN/Proc. ISP RAS. Vol. 19. 165-186. 2011. 14/19

ROP Chain Semantics Analysis

e Binary ROP chain is loaded onto the shadow stack

e Gadgets are classified one by one according to frame info
e Shadow memory is used to restore values of registers and memory
before functions and system calls

e Initially, a shadow memory is empty

e We perform several interpretations of gadget with a shadow memory
as an initial state

e Final values of registers and memory — unchanged from execution to

execution — are added to shadow memory

15/19

Restoring Functions and System Calls

e Names of indirect function calls are gathered from import tables
JMP [EAX]

e Linux system calls and functions prototypes can be found in
man-pages

e System call number and arguments are gathered from the shadow

memory

16/19

Example: MongoDB Linux x86 (CVE-2013-1892)

Binary representation of the ROP chain:

00000000
00000010
00000020
00000030
00000038

68 £7 16 08 07 6d 66 08
07 00 00 00 31 00 00 00
00 00 00 00 c8 e4 16 08
00 00 Ob Oc 00 20 00 00

00 70 33 31 00 20 00 00 |h....mf..p31. ..|
ff £ff ff £f 00 00 00 00 |....1........... |
00 70 33 31 00 70 33 31 |......... p31.p31|

17/19

Example: MongoDB Linux x86 (CVE-2013-1892)

0x0816f768 : Asm : JMP DWORD PTR [08A1AF84h]

0x0816f768 : Call [0xB8alaf84]

0x0816£768 : mmap(0x31337000, 0x2000, 0x7, 0x31, Oxffffffff, 0x0)
from libc.so.6

0x08666d07 : Asm : ADD ESP, 00000014h ; POP EBX ; POP EBP ; RET

0x08666d07 : LoadConstG : EBX <- [ESP+20], EBP <- [ESP+24]
NextAddr=[ESP+28], FrameSize=32

0x08666d07 : ShiftStackG : ESP +<- 28

0x08666d07 : Values : EBX <- 0x0 ("\x00\x00\x00\x00"),
EBP <- 0x0 ("\x00\x00\x00\x00")

0x0816e4c8 : Asm : JMP DWORD PTR [08A1AADCh]

0x0816e4c8 : Call [0x8alaadc]

0x0816e4c8 : memcpy(0x31337000, 0xcOb0000, 0x2000) from libc.so.6

0x31337000 : Call 0x31337000

0x31337000 : Values : [ESP+4] <- 0xcOb0000, [ESP+8] <- 0x2000

18/19

Application CVE Number Platform Gadgets from
MongoDB CVE-2013-1892 Linux x86 mongod
Nagios3 CVE-2012-6096 Linux x86 history.cgi
ProFTPd CVE-2010-4221 Linux x86 proftpd
Nginx CVE-2013-2028 Linux x64 nginx
AbsoluteFTP CVE-2011-5164 Windows x86 ~MFC42.dll
ComSndFTP N/A 2012-06-08 Windows x86 msvert.dll

19/19

Extra

Gadget Verification

e Gadget classification provides a set of postconditions describing
possible gadget semantics

e Gadget verification formally proves these postconditions for each
input
e Gadget verification implementation is based on Triton dynamic
symbolic execution engine
e Initially, all registers are assigned to free symbolic variables
e Symbolic memory is implemented via select and store operations
over SMT array
e Symbolic execution of gadget instructions generates SMT formulas
over constants and variables, it also updates the symbolic state of
registers and memory
e Postcondition validity is checked via unsatisfiability of its negation

Triton: github.com/JonathanSalwan/Triton

https://github.com/JonathanSalwan/Triton

Gadget Verification Example

ArithmeticLoadG : rbx < rbx + [rax]

Step | Symbolic state Instruction Set of symbolic expressions
M, rax = ¢1, rbx = ¢2,
initial | rex = ¢3, rsp = ¢a, — So=10
rip = ¢s
1 rex = ¢ mov rcx, [rax] S =SoU{¢ps = M[p1]}
rbx = ¢7 add rbx, rcx S =51 U{¢7 = b2+ 6}
. . 53 = S U {¢g = M[¢a],
final rip = ¢s, rsp = ¢g ret bo = bu + 8)
Semantic definition Semantic verification
(final(rbx) = initial(rbx) + initial(M[rax])) A | =((¢7 = ¢2 + M[¢1]) A
verify | (final(rip) = initial(M[rsp])) A (g = M[¢pa]) A
(final(rsp) = initial(rsp) + 8) (9 = ¢4 + 8)) is UNSAT

	Motivation
	Stack Buffer Overflow
	Stack Smashing and Executable Space Protection (DEP)
	Return-to-libc Attack
	Address Space Layout Randomization (ASLR)
	Return-oriented Programming
	Problem Definition
	Gadget Frame
	Method for Analysis of Code-reuse Attacks
	Gadget Semantic Definition
	Gadget Classification
	ROP Chain Semantics Analysis

	Results
	Appendix
	Gadget Verification

