
October	2017,	St.	Petersburg	
	So4ware	Engineering	Conference	Russia	
October	2017,	St.	Petersburg	
	So4ware	Engineering	Conference	Russia	

Construc=ng	the	formal	
grammar	of	system	calls	

Nikolay	Efanov,	MIPT	

Motivation
1.  Immediate process tree analysis in Checkpoint-Restore.
2.  Overhead/extra metadata minimization during Live-Migration.
3.  Ideally: process tree + useful context (memory, files etc) only.

 Target Instance Target Instance

 state dump (Host 1) resuming (Host 2)

 1 2

Saving / Transmitting the saved state

The Statement and Restrictions:
1.  Reconstruct the syscall sequences which lead to some snapshotted

process tree.
2.  Restrictions:
•  Linux syscalls only
•  Input is correct. Otherwise: ”Parsing error”.
•  Syscalls:

ü  Fork: creates a child process
ü  Setsid: creates a session with current process as leader
ü  Setpgid: sets a group as setpgid(0,pgid)
ü  Exit: terminates a process -> reparent is initiated

ü  à Basis of process tree transformations
	

•  Different process trees using fork:

Direct generation/search is not the best idea!
•  Moreover …

	

Combinatorial Estimations

Combinatorial Estimations
•  Taking setsid into account:
	
	

Combinatorial Estimations
•  Taking setsid into account:	

	
	

Suggestion #1: new tree notation
The	new process tree single-string notation:
•  Single process: “p g s [...]”, where:

Ø  Numbers: p – PID, s – SID, g – PGID
Ø  ‘[‘,’]’ – terminal limiters of children-containing list .
Ø  list for a root of any subtree contains all of descendants (thus,

fork is notation-based)
•  Example:

String: “1 1 1 [2 1 1 […]]”

is equivalent to such tree à	
	

Suggestion #2: syscall grammar
The grammar rules for fork, setsid, setpgid,exit*:
•  Notation-based form:

Ø  fork(* * * [*]) --> * * *[* \2 \3 [] \4].
Ø  setsid(* * * [*]) --> \1 \1 \1 [\4].
Ø  {p p * [*], setpgid(p, * * \1 [*]) | setpgid(p, p * * [*])} -->

{p p \1 [\2], \3 p \1 [\5] | p p \2 [\3]}, where ‘{‘,’}’ :
configuration exists or existed there.

•  The grammar is context-sensitive (setpgid rule)
•  Setpgid rule is separable into independent context-sensitive and

context-free cases.
	

Grammar Shortening: exit
The grammar rule for exit:
•  Notation-based form:

Ø  {1 * * [*], exit(* * * [*])} --> 1 \1 \2 [\3 \7].
•  The grammar is type-0 (exit is shortening rule)
•  3 heuristics (reverse-reparenting):

1)  Is session(child) unique? --> create ‘exited’ process with
PID==session number, then --> reverse reperenting.

2)  Otherwise: no ‘exited’ processes in session(child)? --> attach
the ‘exited’ process to session leader, then --> reparenting via
setpgid, setsid.

3) Else: look up for suitable ‘exited’ process session(child) -->
attach. No suitable processes? --> use 2).

	

Grammar Analyzer
•  Two-stage analyzer: O(Nlog(N)log(S)log(P))

Ø Stage 1: context-free analysis --> intermediate pre-analysed tree
Ø Stage 2: context checking --> final syscall sequences restoring

q +AVL-Based structures: p,g,s logging

	

		

Example: Stack In More Detail

Experiment Setting
•  Analyzer vs profile-based techniques:

Ø ‘slow’: strace-based

Ø ‘progressive’: perf-based

•  Two profiles of tests:
Ø ”Simple-load”: two simple cases without reparents
Ø “Heuristic”: high-rated reparents

Test Profiles and Cost Metrics:	

Experimental Results

Conclusions
•  The solution is feasible for the simplest syscalls restoring

•  Is better than ptrace on < 3000-4000 processes

•  Complex rules should be handled accurately
 à drawback

•  Ways to improve:
Ø New syscalls/features (file descriptors, memory etc)
Ø New methods desingning

	

Thank You For Attention !

Have any questions?
	

nefanov90@gmail.com

Simple-load	(Hidden	slide)	

Heuris=c:(hidden2)	

