### Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)

# The study of neurodynamic systems of continuous adaptive control

Vladimir Sudakov, <u>sudakov@ws-dss.com</u>
Vladimir Osipov,
Alexander Vasilyev, Yuri Nechaev

#### WS-DSS.COM



#### Models in WS-DSS



#### **Parameters**



# A conceptual model of integrated computing complex



### Spiral structure and model that implements the strategic planning of operations





# Neural network ensemble implements the model climate spectra of sea excitement



The structure of neural network ensemble implementing the transformation operator of complex signals when controlling complicated situations



Radial basis function network – Perceptron – Kohonen's network

# Control of the object dynamics in the process of system evolution

- controls the equilibrium parameters of the sea dynamic object:
  - careen,
  - trim,
  - draft by the nose and stern,
- forecast of
  - the safe speed,
  - the course angle of the wave
     depending on the intensity of external disturbances

#### **NEURO-FUZZY** model

Instead of setting preference areas for decision makers, a neural network with fuzzy rules is trained:



# Model of a logical conclusion according to a precedent



# Scheme of modeling evolutionary dynamics of complex systems



#### Results of the NEURO-FUZZY model

```
0 0 0 ( > ID
                                                                                                                                       0 0 0
                                                                       ws-dss.com
    nrt <- .RinRubySget value()
    .RinRuby$parse.string <- .RinRuby$get_value()
    .RinRuby$parseable(.RinRuby$parse.string)
      require("parallel")
       require("anfis")
      X <- matrix(x,ncol=nc,nrow=nr)
      Y <- matrix(y,ncol=1,nrow=4)
      membershipFunction<-list(
      x=c(new(Class="NormalizedGaussianMF",parameters=c(mu=0.25,sigma=0.3)),
       new(Class="NormalizedGaussianMF",parameters=c(mu=0.5,sigma=0.3)),
       new(Class="NormalizedGaussianMF",parameters=c(mu=0.75,sigma=0.3))),
      y=c(new(Class="NormalizedGaussianMF",parameters=c(mu=0.25,sigma=0.3)),
       new(Class="NormalizedGaussianMF",parameters=c(mu=0.5,sigma=0.3)),
       new(Class="NormalizedGaussianMF",parameters=c(mu=0.75,sigma=0.3))))
       anfis3 <- new(Class="ANFIS", X, Y, membershipFunction)
       trainOutput <- trainHybridJangOffLine(anfis3, epochs=10)
     [1] "epoch: 1"
     [1] "epoch: 2"
     [1] "epoch: 3"
        "epoch: 4"
        "epoch: 5"
     [1] "epoch: 6"
     [1] "epoch: 7"
     [1] "epoch: 8"
     [1] "epoch: 9"
      X <- matrix(t,ncol=nc,nrow=nrt)
      ytest <- c(predict(anfis3,X))
    print('RINRUBY.EVAL.FLAG')
    [0.5152844385912677, -0.0006224513273620971]
   Error/check code: 0/0/0
   Created at: 2019-12-04 19:43:11 +0300
   Changed at: 2019-12-04 19:43:14 +0300
```

#### Interaction scheme



### Leaning: Neural network training

Is there an airplane in the picture?



### Prospects

Let's integrate your models

Write me: sudakov@ws-dss.com

Thanks for attention!