
HUAWEI TECHNOLOGIES CO., LTD.

Language Design:

OOP or not OOP or better OOP

Author’s name: Aleksei Nedoria

Date: Dec, 2019

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential
Page 2

Huawei New Programming Language

• Goal: to improve the application development ecosystem for various Huawei

devices

• Ecosystem: should include a unified, developer-friendly development

environment that provides multi-platform application development and a high

level of reuse.

• Language: support of component-oriented programming (COP): assembling (an

essential part) of the program from ready-made components.

• One of the steps in the direction of COP is the right choice of OOP features.

• In this talk we do not consider COP directly, focusing on the OO paradigm

implementation.

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential
Page 3

Confusing state of OOP Paradigm

The situation with the OO paradigm is quite confusing. In fact, there is no

consensus in the IT community on what OOP is.

OOP in Go, Rust, Elegant Objects (EO) and Lua is fundamentally different from

OOP in C++ and Java.

Feature C++ Java Go Rust EO Lua

Class + + - - - -

Class (static) methods and properties + + - - - -

Interface - + + + (trait) + -

Interface inheritance (abstraction) + + - + + -

Implementation inheritance + + - - - -

Immutability - - - + + -

Dynamic creation of a class - - - - - + (аналогов

классов)

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential
Page 4

Criticism of class-based OOP

Languages with object orientation based on classes and implementation

inheritance (CLOP languages, where CLOP – Class-Oriented Programming) are

criticized for the lack of flexibility and for the problems of developing reusable

components.

Joe Armstrong, author of Erlang:

I think the lack of reusability comes in object-oriented languages, not in

functional languages. Because the problem with object-oriented languages is

they’ve got all this implicit environment that they carry around with them. You

wanted a banana but what you got was a gorilla holding the banana and the

entire jungle.

We need better OOP.

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential
Page 5

Our steps to better OOP or CLOP is a Bug

1. Not CLOP

2. No implementation inheritance

3. Better support for component reuse

Better reuse

• the ability to reuse components (compile once, use everywhere) for different

devices significantly increases the efficiency of COP.

• Hence, the requirement to extend objects (add methods) without having to make

changes to the source code and to minimize recompilation.

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential
Page 6

An example of the object extension - 1

Let’s define List data structure with Append and Remove methods.

type List = struct {

… fields …

fn (l: List) Append(e: Element) …

fn (l: List) Remove(e: Element) …

}

Suppose some applications need an operation to add a list to the list.

Method 1: implement as external function in a separate compilation unit

fn AppendList(to, from: List) …

Disadvantages:

1. One must import the AppendList function additionally (and be aware of Its

existence);

2. Lack of uniformity: calling the AppendList function is different from calling Append;

3. The performance of this function is likely not best.

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential
Page 7

An example of the object extension - 2

Method 2: add AppendList to original List

List = struct {

fn (l: List) Append(e: Element) …

fn (l: List) Remove(e: Element) …

fn (l: List) AppendList(from: List) …

}

This eliminates the drawbacks of method 1, but leads to a change in the source code

and the need to recompile all software parts that use List.

Both of these methods do not suit us, we want to provide an extension without

compromising performance, and without having to recompile those parts that do not

use AppendList.

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential
Page 8

An example of the object extension - 3

Method 3: separating to unite

Let's separate atomic (separately compiled) entities:

• List definition as a hidden type

• List:impl structure with specific implementation details

• Methods Append, Remove that use List:impl

And then assemble the “object” from its parts using a “usebox” unit:

usebox std.containers.list

import …

export List:impl as List + Append + Remove

In order to add AppendList we implement it separately and then define another

usebox:

usebox std.containers.list2

export List:impl as List + Append + Remove + AppendList

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential
Page 9

Method 3 Advantages

• All program parts that don’t need AppendList still use first usebox (no need to

change or recompile)

• All program parts that do need AppendList will use second usebox (need to

change import and recompile)

• There is no code duplication, since usebox is a compile-time unit. Both

std.containers.list и std.containers.list2 can be used in one program, but the

code of Append, Remove methods will be not duplicated.

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential
Page 10

Encapsulation

The proposed mechanism contradicts the conventional encapsulation, and, at first

glance, may reduce the reliability of programs due to the possibility of access to the

List implementation details.

In fact, we are used to conventional encapsulation and do not notice its oddities.

Instead of mechanical protection from "all", it is necessary to protect the

implementation details from those who can spoil it. Or from those who are not

authorized.

Access levels:

• Access to the method code: for method developer

• Access to the structure implementation for use (not for change): for method

developers

• Access to the structure implementation for change: for code owner

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential
Page 11

Conclusion

Our experimental language will contain several OOP-like features to improve

extensibility and reuse.

The proposed feature is used for so-called horizontal extension, other features will

help with vertical extension (like inheritance), adding dynamics (trait objects and

duck typing) and generics.

We are working on a language, compiler and run-time system prototype to check

the usefulness of the proposed approach.

Thank You

