ags)e
ngs

Vagif Abilov

Functional programming
What'sin it for us?

About myself

* Consultant in Miles (several “"Great Place to Work” awards in Norway in Europe)
* Mail: vagif.abilov@gmail.com

* Twitter: @ooobject

* GitHub: object

* BitBucket: object

* Blog: http://vagifabilov.wordpress.com/

* Articles: http://www.codeproject.com

http://www.codeproject.com/

What this talk is not about

* Proving that certain language paradigm better fits agile development practices
* Convincing you that the language of your choice is sooo last week

* Starting the Vietnam war

* Going into deep level language details

So what is it about then?

* The talk is aimed at "pragmatists in
pain"

* Term coined by Erik Sink in his blog
post about F# adoption

* Refers to Geoffrey Moore's technology
adoption life cycle

Crossing the Chasm

mzs Q'm ‘.

Innovators Early Adopters

Early Majority Late Majority

- 1991

Agenda

Making it with just transformations
Designing generic code with type inference
Painless concurrency

Discriminated unions and pattern matching
Railway oriented error handling

SHE L

Specifications and tests

The code examples are in F#, Scala has similar syntax

Let's play job interview: designing Conway’s game of life

Conway's game of life

* Invented in 1970 by the British mathematician John Conway
* Zero-player game, its evolution is fully determined by its initial state

* The universe of the Game of Life is an infinite two-dimensional orthogonal grid of
square cells, each of which is in one of two possible states, alive or dead

Rules of Conway's game of life

1. Any live cell with fewer than two live neighbours dies, as if caused by under-
population

2. Any live cell with two or three live neighbours lives on to the next generation
3. Any live cell with more than three live neighbours dies, as if by overcrowding

4. Any dead cell with exactly three live neighbours becomes a live cell, as if by
reproduction

Implementing Conway's game of life
How do we start?

* Classes

* Class properties
* Class methods
* Structs

* Enums

What people say on Twitter

"How is writing Java like writing classic Russian literature? You
have to introduce 100 names before anything can happen.”

@jamesiry

Speaking about Russian literature

LLlenoT, pobkoe abixaHbe.
Tpenun conosbA,
Cepebpo 1 KosbIxaHbe CBET HOYHOU, HOYHbIE TEHW,
COHHOro pyubs. TeHn 6e3 KOHUQ,
Psaa BonwebHbIX M3MEHEHUM B AbIMHBIX Ty4YKax nypnyp po3bl,
Mwnoro nnua, OTbneck AHTapS,
N nob3aHunsa, v cnesbl,
W 3aps, 3apsa!..

A short poem by Afanasy Fet (1850) without a single verb

Checking reference implementation

State
~ Abstract Class
Universe .
ClaSS ce“ ~
Class =/ Methods

g

¥ GetStateType

+ Fields

+ Fields .
= Properties »13

W cell =/ Properties
ells — ;
o = Col Dead Alive
= Methods ;'r Neighbc.rs Class Class
GetCellState 5 Row - State -+ State
Regenerate 7 state

Se;Neighb|3rs Methods
s e @ GetStateType ¥ GetStateType

=l Methods =] Methods

CodeProject.com
Solving Conway's Game of Life using State Pattern

Implementation code metrics

* 5 classes

* 5 properties

* g methods

* 316 lines of code

* 64 effective lines of code (calculated using VS code metrics)

Cell state definition propositions

* Class (base class with 2 subclasses implementing State pattern)
* Enum (Dead, Alive)
* Boolean

Cell state choice consequence

* No matter what type you choose to represent cell state, you will need a cell property to hold it

* Having cells with different property values (Dead and Alive) encourages design where both states of
cells are stored

* Storing cells with different states has negative impact on the scalability
* Moreover, it limits the solution to boards of fixed size
* Adding names add constraints!

Design patterns rant

Design patterns are often introduced to
patch up shortcomings in the language

Solving Conway's game in a functional way

let (x, y) =
[for i in x-1..x+1 do
for j in y-1..y+1 do
if not (1 = x & j = y) then yield (i,3j)]

let population cell =
population
|> List. ((=) cell)

let population cell =
cell
|> List. (population)

...survival and reproduction criteria

let population cell =
population cell
|> List.
> fun X -> X >= 2 X <= 3
f &&

let population cell =
population cell
|> List. =3

... the final part of the solution

population =
population
|> List.
|> Set. |> Set.
|> List. (<< population)
population =
List.
(population
|> List. (population))
(population
|> List. (population))

Note use of colors: the only word in white is “population”. No variables!

Preliminary observations

* We haven't defined a single class

* We haven't explicitly used types

* Having defined necessary functions, we used them without defining a single variable
* The solution doesn't only scale well, it works on an infinite board

* The algorithm is generic (will be demonstrated in a minute)

* The algorithm can be easily parallelized (will be demonstrated in a few minutes)

Type inference makes code generic

let population cell = let population =
population population
> List. =) ce > List.
|> L] ((=) cell) |> L1
|> Set. |> Set.
let population cell = |> List. (not <« population)
cell
|> List. (population) let population =
List.
let population cell = (population
population cell |> List.
|> List. (population))
|> fun x -> x >= 2 && x <= 3 (population
|> List.
let population cell = (population))

population cell
|> List. = 3

Inferring board dimension

let
[for
for

let
[for
for
for

(XJ y) =

iin x-1..
j in y-1..

X+1 do
y+1 do

if not (i = x & j = y) then yield (i,j)]

(X, y, z) =

iin x-1..
j in y-1..
k in z-1..
if not (i

x+1 do
y+1 do
z+1 do
= X && j

y && k

z) then yield (i,j,k)]

Conway's game of colors using type inference

type Color = Red | Green | Blue | White | Gray
| Black | Orange | Yellow | Brown

let neighbours color =
match color with
| Red -> [Red; Orange; Brown]
| Green -> [Green; Blue; Yellow]
| Blue -> [Blue; Green]
| White -> [White; Gray]
| Black -> [Black; Gray]
| Gray -> [Gray; Black; White]
| orange -> [Orange; Red; Yellow]
| Yellow -> [Yellow; Orange; Green]
| Brown -> [Brown; Red]

... and the main algorithm hasn't changed a bit

let population cell = let population =
population population
> List. =) ce > List.
|> L] ((=) cell) |> L1
|> Set. |> Set.
let population cell = |> List. (not <« population)
cell
|> List. (population) let population =
List.
let population cell = (population
population cell |> List.
|> List. (population))
|> fun x -> x >= 2 && x <= 3 (population
|> List.
let population cell = (population))

population cell
|> List. =3

Language immutability as a remedy for concurrency hell

"There’s no such thing as a convention of immutability, as
anyone who has tried to enforce one can attest. If a data
structure offers only an immutable API, that is what's most
important. If it offers a mixed AP, it's simply not immutable."

Rich Hickey, creator of Clojure and Datomic

Parallelizing Conway's game solution

// Sequential solution

let population =
List.
(population
|> List. (population))
(population
|> List. (population))

// Parallel solution

let population =
{
yield (population
|> PList. (population))
yield (population
|> PList. (population))
}

| > PSeq.

Are you with me so far? If so you are awarded

| OE

-

y 5

AV

Functional languages as DSLs

* Functional languages often don't have the same level of ceremony as traditional object-
oriented languages

* Terse syntax may sound like a threat to readability but in fact domain specific
definitions in languages like Scala and F# are clear and readable even for non-
programmers

Recommended reading

* Scott Wlaschin
Domain Driven Design with the F# type System
http://bit.ly/aMlokLd

* Simon Cousins
Time for Functions
http://bit.ly/2aGTFpRw

http://bit.ly/1MI0kLd
http://bit.ly/1MI0kLd
http://bit.ly/1MI0kLd
http://bit.ly/1GTFpRw
http://bit.ly/1GTFpRw
http://bit.ly/1GTFpRw

Energy trading project statistics (by Simon Cousins)

Implementation C#

Braces 56,929
Blanks 29,080
Null Checks 3,011
Comments 53,270
Useful Code 163,276
App Code 305,566
Test Code 42,864
Total Code 348,430

Defining financial domain

type CardType = VISA | MasterCard | AmEx | Diners | Domestic
type CardNumber =

type PaymentMethod =
| Cash
| Cheque of
| Card of CardType * CardNumber

Working with financial domain

let sum paymentMethod =
match paymentMethod with
| Cash -> sum * 0.05
| Cheque _ -> sum * 0.20
| Card (cardType, _) when cardType = Domestic -> sum * 0.10
| card (_, _) -> sum * 0.15

Error management monadic way

. i .‘-,;;;mﬁi;-ii—. = -
R éﬁJ-an
L TR L -

- » == 22 1) 4 i
o
|
W

Term "Railway Oriented
Programming" coined by
Scott Wlaschin

Happy and error paths combined

m""mu.xmii‘ it "'"mzsium T ST

iyl = u/p/ !, i ?’m
il i ; ; G !ll!ih.l!i!l!!!.’!! v

Source: http://bit.ly/2CqGyAN

Easier code execution workflow management

Testing functional way

let °° () =
let population = [(1,1); (1,2); (2,1); (2,2)]
population
| >
| > population

BDD using functional languages

Scenario: Refunded items should be returned to stock

Given a customer buys a black jumper

And I have 3 black jumpers left in stock
When he returns the jumper for a refund
Then I should have 4 black jumpersin stock

Acceptance test functional way

let [<Given>] °° 0 =0

let [<Given>] *° (.%) T (n
stockItem <- { stockItem with =n }

let [<when>] ~° 0 =
stockItem <- { stockItem with = stockItem. + 1}

let [<Then>] °° (.%) 7 (n

stockItem. | > n

Summary

* Functional transformations bring you far without a single defined type

* Type inference makes your algorithms generic

* Immutable code can be easily parallelized

* Discriminated unions help you define human readable DSLs

* Pattern matching makes your processing rules easy to read too

* Error handling becomes part of functional transformations

* Start your adventure with functions by writing specifications and tests in a functional language

And now for something completely different

Living With No Sense Of Monads

Originally performed by Smokie
with slightly different words

| first met Alice in a small bookstore,
"What book, - | asked, - are you looking for?"
And she said: "About monads."

| understood that's a key to her heart,
| had no doubts that | was smart.
It should be easy reading, an easy start...

But | still don't get this wisdom,

It's really mystic word

| guess it has it's reasons,

Someone gets it, but | don't.

'Cos for twenty-four years

I've been trying to understand the monads.

Twenty-four years

Just waiting for a chance,

| have to keep on reading,
Maybe get a second glance,

| will never get used to not understanding sense of
monads

Grew up together, went to the same class,
And to be honest: | was better in math
Than Alice.

Too old for rock-n-roll - I'm forty four,
Too young for monads - still have a hope.
That the day will come

When I let Alice know...

But | still don't get this wisdom,

It's really mystic word

| guess it has it's reasons,

Someone gets it, but | don't.

'Cos for twenty-four years

I've been trying to understand the monads.

(all together):
Monads! What the f*ck is monads?!

Twenty-four years

Just waiting for a chance,

| have to keep on reading,
Maybe get a second glance,

| will never get used to not understanding sense of
monads

Thank you!

* | am Vagif Abilov, consultant in Miles

* Mail: vagif.abilov@gmail.com

* Twitter: @ooobject

* GitHub: object

* BitBucket: object

* Blog: http://vagifabilov.wordpress.com/
* Articles: http://www.codeproject.com

