
Interprocedural Framework for Binary Static
Analysis

Hayk Aslanyan

hayk@ispras.ru, ISPRAS

ISPRASOpen 2018, Moscow

mailto:hayk@ispras.ru

Protect your software: Static Analysis

• Static code analysis is one of the common approaches for detecting defects. This
approach is a program analyzing method that is performed by examining the
code without executing the program.

• Through a complete analysis of syntax, semantics, control and data flow, static
code analysis can find errors that are difficult or impossible to find in the testing
phase of programs.

Binary files analysis is important

• The source code of the program is not always available, thus the use of source
code analyzers becomes impossible.

• Not all compiler optimizations are safe, they can lead to errors in binary code
that don’t exist in the source code.

• Analysis of a binary can provide more accurate information than a source-level
analysis, because, for many programming languages, certain behaviors are left
unspecified by the semantics

Why do we need to analyze the binary files?

int callee(int a, int b) {
int local;
if (local == 5) return 1;
else return 2;
}

int main() {
int c = 5;
int d = 7;
int v = callee(c,d);
// What is the value of v here?
return 0; }

Unexpected behavior due to compiler optimization

Standard prolog Prolog for 1 local

push ebp push ebp

mov ebp, esp mov ebp, esp

sub esp, 4 push ecx

mov [ebp+var_8], 5

mov [ebp+var_C], 7

mov eax, [ebp+var_C]

push eax

mov ecx, [ebp+var_8]

push ecx

call _callee

. . .

Formulation of the problem

• Develop a framework for static analysis of binary code that is independent from
the architecture, scalable and easily extensible

• Develop methods of data flow analysis, value analysis, taint analysis for the
binary code

• Develop methods for finding defects of use-after-free, double free, format string,
buffer overflow and command injection

Architecture

Binnavi

REIL

IDA Pro

∙ Assemble

∙ Control flow graph

∙ Functions call graph

Binary file

Interprocedural analysis

• Value analysis

• Data flow analysis

• Taint analysis

• Function annotations

• Defects detectors
Error Information

REIL representation

• Platform independent

• 17 simple instructions (and, add, ldm, stm…)

• It has no side effects

Architecture - Interprocedural Analysis

• Splitting a call graph into groups

• Each group is analyzed in parallel

Call graph Graph

modification into

acyclic form

Splitting into layers

layer

layer

layer

Intraprocedural analyzes

• Value analysis

• Analysis of reaching definitions

• Constructing DEF-USE and USE-DEF chains

• Dead code elimination

• Constant propagation transformation

• Taint analysis

• Dynamic memory analysis (tracing memory allocation and
deallocation)

Value analysis

At each program point compute all possible values that the given

register or memory address can have:

• Memory simulation in the stack

• Memory simulation in the heap

• Static memory and global variables

Intraprocedural analyzes

• Function annotations

• The function dereferences the argument

• The function returns tainted argument (gets, …)

• The function deletes the memory pointed by its argument (free, delete)

• The function is format function (printf, fprintf,…)

• Buffer overflow function (strcpy, memcpy)

Intraprocedural analyzes

• Function annotations

• System function annotations

• The function deletes the memory pointed by its argument (free, delete)

My_free(int* p) {

free(p);

}

• My_free gets annotation - The function deletes the memory pointed by its
argument

Intraprocedural analyzes

• Defects detectors

• Use-after-free

• Double free

• Format string

• Buffer overflow

• Command injection

Defect detectors

void f () {

...

gets(p);

prinf(p);

}

40073C push rbp
40073D mov rbp, rsp
400740 sub rsp, 70h
40074E lea rax, [rbp+format]
400752 mov rdi, rax
400755 call _gets
40075A lea rax, [rbp+format]
40075E mov rdi, rax
400761 mov eax, 0
400766 call _printf
40076B mov eax, 0
400770 leave
400771 retn

Trace

400755 400766

Results (Use-After-Free, Double-Free)
Project Architecture Size Analysis time Number of found UAF and DF Percentage of correct handling

accel_pppd 1.10.0 x86 232 KB 3m 4 100%

gnome-nettool 3.8.1 x86 336 KB 1m 40s 1 100%

slpd 1.2.1 x86 128 KB 50s 1 100%

libssh 0.5.2 x86 632 KB 3m 14 57%

jasper 1.900.1 x86 980 KB 11m 41s 1 100%

libtiff 4.0.3 x86 1 KB 2m 58s 3 67%

accel_pppd 1.10.0 x64 244 KB 4m 1s 1 100%

gnome-nettool 3.8.1 x64 436 КB 1m 50s 3 67%

libssh 0.5.2 x64 324 KB 3m 50s 13 53%

slpd 1.2.1 x64 128 KB 3m 1s 1 100%

pbs_server 2.4.8 x64 1.6 KB 11m 48s 1 100%

Results(comparison with GUEB)

Project

Working

time of

GUEB

Found UAF

and DF

with GUEB

Percentage of right

handling of GUEB

Found UAF and

DF
Percentage of right

handling

gnome-nettool

3.8.1
16 s 4 25% 1 100%

gifcolor 5.1.2 21 s 15 6% 1 100%

jasper 1.900.1 4m 23s 255 1.2% 3 100%

accel-pppd 1.10.0 5m 5s 35 11.4% 8 50%

Results (Buffer overflow, Format String , Code
injection)

Project Architecture Size Analysis time Number of found defects Percentage of correct handling

dba 2.4.1 x86 312 KB 1m 40s 12 50%

httpd 0.5.0 x86 6.4 MB 6m 51s 22 90.9%

iwconfig 26 x86 44 KB 24 s 3 100%

mkfs 1.1.12 x86 56 KB 25 s 9 100%

pswdb 2.4.1 x86 300 KB 55 s 9 33%

hsolinkcontrol 1.0.118 x86 28 KB 2 s 22 100%

alsa_in 1.1.3 x86 28 KB 8 s 2 100%

htget 0.1 x64 28 KB 11 s 12 100%

mkfs 1.1.12 x64 56 KB 19 s 7 100%

libtorque 2.0.0 x64 892 KB 57 s 12 100%

alsa_out 1.1.3 x64 28 KB 10 s 2 100%

pbs_server 2.4.8 x64 320 KB 3m 20s 4 75%

Results(comparison with Loongchecker)

Project Size LoongChecker Percentage of

correct handling

of LoongChecker

Number of

found defects

Percentage of

correct handling

Serenity.exe 19.6 MB 8 12.5% 2 50%

FoxPlayer.exe 33 MB 27 4% 2 100%

Thanks for attention

