
1

Deploying SVACE to Samsung

Youil Kim (Samsung Research)

Ivannikov ISP RAS Open Conference 2019

2

Background

SVACE is a static analysis tool for early detection of SW bugs.
• The name stands for “Security Vulnerabilities And Critical Errors.”

Static analysis estimates a program’s runtime behavior without actual execution by
analyzing the source code.
• It does not require runtime environments or test inputs.

• It is easily applicable to large-scale SW.

• We may consider it as an automated code review.

1: void f(int *ptr) {
2: if (!ptr) {
3: *ptr = 0;
4: }
5: }

Code review

ptr can be NULL
@ line #3
 Defect

Static analysis

ptr can be NULL
@ line #3
 Defect

3

A Short Collaboration History

In 2009, we started a joint project on SVACE of ISP RAS.
• To introduce SVACE as an auxiliary tool in addition to commercial tools

In 2012, we decided to develop SVACE for the purpose of deploying it as the main
static analyzer in our SW development process.
• We put a lot of time and effort in improving SVACE from 2013 to 2015.

• ISP RAS colleagues also had very tough time.

At the end of 2015, we successfully deployed SVACE!
• We improved SVACE every year and released SVACE 3.0 in this year.

Our collaboration is to be continued in 2020.

4

Our Current Position

SVACE has been deployed to most business divisions in the company.
• Samsung Research

• Digital Appliances Business

• Health & Medical Equipment Business

• Mobile Communications Business

• Network Business

• Visual Display Business

Most of C, C++, C#, and Java source code is regularly checked with SVACE.
• Including Tizen TVs, Samsung mobile devices, FamilyHub, etc.

• More than 10,000 users (developers)

• More than 300 billion lines code has been checked (since 2015.)

5

From Research to the Field

There were several challenges.

• We knew that it would be never easy, but we underestimated the effort.

Build
Capture

Analysis
Engine

Defect
Management

System

Source
Code

IR Defects

This is important.

These are even more important.

6

Challenges #1 – Build Capture

What happened to us when we tried to analyze C/C++ code in the company
• Build capturing is essential.

• Clang was not enough to support 90 different C/C++ compilers in the company.

• We had to support various systems including an old legacy OS.

• Conventional build capture implementation may not work with Git Build System (GBS) or Open Build
Service (OBS).

Some achievements
• SVACE provides quite stable build capture feature.

• We extended Clang so that it can handle most of the company code, with a small workaround to
ignore unknown constructs.

• We made a special RPM package to install SVACE into GBS/OBS build roots and enable SVACE’s build
capture.

7

Challenges #2 – Analysis Engines (1/2)

IR level analysis was not enough.
• At the beginning, SVACE was a static analyzer for LLVM bitcode.

• Some coding errors could not be detected after we translate the code into LLVM bitcode.

Path-sensitive analysis was not enough.
• Path-sensitive analysis was essential but was not enough to satisfy our quality goals.

• There is no one silver bullet to address many different false positive patterns.

• Some warnings are technically true positives, but developers don’t want to see them.

Some achievements
• SVACE has lightweight checkers on AST. (e.g., Clang Static Analyzer for C/C++ language)

• SVACE performs path-sensitive analysis using an SMT solver.

• In this year, we removes 47% of useless alarms that developers marked as ‘Won’t Fix’ and ‘False Alarm’
in 52 C/C++ checkers.

8

Challenges #2 – Analysis Engines (2/2)

Analysis results should be deterministic and stable.
• We should not rely on hardware timer, random values, or any non-deterministic components.

• A build process is often not deterministic, due to timestamps, temporary files, and so on.

• Even if some part of a project has been changed, developers expect to get the same set of defects for
the rest (unchanged part) of the project.

The performance is always not enough.
• Developers expect to get daily analysis results even for the largest codebase.

• Our codebase becomes larger and larger.

• Developers even expect to get analysis results within several minutes after code review integration.

Some achievements
• It takes 11 hours for SVACE to build and analyze Tizen 5.0 platform (17M LOC).

• SVACE produces the same results for each trial, when we build and analyze the Tizen platform 5 times.

9

Challenges #3 – Defect Management

It is crucial to have a good defect management system.

• Some of key features are supports for code navigation and grouping similar warnings.

• It requires considerable efforts to develop such system as it should be able to handle a lot of data.

Some achievements
• SVACE provides some necessary information (e.g., warning grouping factors, relations among code

tokens) for defect management systems.

• We developed our own defect management system and improved it for several years.

10

One More Challenge – Competitiveness

We should keep our competitiveness against commercial tools.
• By meeting company-specific requirements better

• By tight integration into our SW development infrastructure

Some achievements
• In 2015, we provided SVACE for an old legacy RHEL 3 system, which a commercial tool stopped to

support.

• In 2016, SVACE enabled the analysis of a new Android platform using Jack toolchain, 6 months earlier
than a commercial tool.

• SVACE also has a number of checkers developed by the requests from our business divisions.

11

Conclusion – Beyond A Standalone Tool

We successfully deployed SVACE to the company through active collaboration with
ISP RAS colleagues.

We integrated SVACE into our SW development infrastructure.
• AnalysisHub provides SVACE as a service.

• Code Review Bot provides SVACE results at code-review time.

12

Integration #1 – Static Analysis as a Service

We have developed AnalysisHub, an extensible and scalable framework for
providing static analysis as a service.
• SVACE is one of the core analysis engines in the service.

Repo. B

Developer

Request
Code Analysis

Analysis Report

Repo. C

AnalysisHub Engine

S
V

A
C

E

T
o

o
l B

T
o

o
l C

T
o

o
l D

Repo. A

AnalysisHub Manager

13

Integration #2 – Code Review Integration

On top of AnalysisHub, we developed Code Review Bot.
• It generates automated code review comments including SVACE analysis results.

Tizen Gerrit

GitHub Enterprise

14

Future Work

Structural analysis as another important use case of static analysis techniques
• We developed SCRA, a static analysis tool for extracting a set of metrics and data/call relations,

currently integrated into SVACE.

• We’re developing code analysis services to support refactoring work.

Combining AI techniques with code analysis techniques
• Further reducing false positives

• Learning bug patterns from big code in repositories

Reducing code writing effort
• We started work on automated code fix tools in 2018.

• SVACE can suggest how to fix bugs, for those detected by some C/C++ checkers.

• We’re extending this feature for other checkers.

15

Future Work – Collaboration with ISP RAS

SVACE

AnalysisHub Other
Intelligent
Services

Automated
Program
Repair

AI for Code
Analysis

Code Review Bot

Other
Features

Defect
Management

Collaboration with ISP RAS

Our collaboration is to be continued in the next years.

We hope to extend our collaboration to other areas as well.

16

Thank you

