[leBsATan He3aBNUCMMaH @ 2013
A

HaY4YHO-NpPaKTUYeCKaa KOHpepeHUUS Y CEE-SEC(R

«Pa3paboTka MO 2013» Software Engineering

Conference in Russia
23 - 25 okTAbpA, MocKBa

JlerkoBecHoe npopuanpoBaHue

pasgenaembix onbanortek B Linux
ANA BCTPanBaeMbIX CUCTEM

Kupunn KpuHkuH, Mapk 3acnaBckumn, dayapa, Pabukos

EMC

Motivation

Popular Linux Profilers (gprof, gcov, GPT, Valgrind)
have following problems:

 Need to recompile with special options
(gprof, gcov)

= Need to relink program with 3rd-party libraries
(GPT)

= Need to use special environment for profiling
(Valgrind)

= Need to use superuser rights

28 October 2013

Project goals

We need a tool for system-wide ELF executables performance
analysis.

This tool should allow user next things do easily:

= Profile function calls without recompilation and relinking with
3rd-party libraries

= Profile only given set of C/C++ functions from shared libraries
in Linux

= Profile both dynamically linked and dynamically loaded
functions

= Profile without creating of special environment
» Get information about number and total duration of function calls

= Perform profiling on x86/x64 platforms

28 October 2013 3

“"Non-invasive” profiling

Main ideas:

= Profiler can not be implemented in the program code

= Profiling should be performed at well-defined points of
function calls

» Profiling process should not corrupt the algorithm of
profiled application

» Profiling process should use minimum amount of
system resources

= Results of profiling should be as accurate as possible

28 October 2013 4

Ways to implement

= Infiltration into the symbol relocation
process

= Modification of Linux dynamic linker
(Id-linux.so)

= Modification of dynamic loading library
(libdl.so)

28 October 2013

Dynamic Linking

7/
ld-linux.so (2).”
/

/
b

_dl_fixup

_dl_profile_fixup

_dl_call_pltexit

/

|<

-
-
~ -
- =
— o ==
e e e e = ==

anylib.so

LD_LIBRARY_PATH

anyfuncl()

anyfunc2()

anyfuncn()

int main ()

{

, anyfuncl(); <E

return 0;

28 October 2013

ELF Parsing by Dynamic Linker

Executable object file

ELF header Process image Virtual Address
Program header table init and shared lib 0x080483e0
(required for executables) segments
.text section
0x08048494
.data section \ .text segment X
) (r/o0)
.bss section
.Symtab 0x0804a010
| text .data segment
rel. (initialized r/w)
.dynamic
.debug
bss segment 0x0804a3b0
Section header table (uninitialized r/w)

(required for relocatables)

28 October 2013

1. Resolving the Dependencies

= When linking a dynamic executable, one or more shared
objects are explicitly referenced. These objects are recorded
as dependencies within the dynamic executable.

= The runtime linker uses this dependency information to locate,
and load, the associated objects.

= Once all the dynamic executable’s dependencies are loaded,
each dependency is inspected, in the order the dependency is
loaded, to locate any additional dependencies.

28 October 2013

1. Resolving the Dependencies

= The Linux runtime linker looks in two default locations for dependencies /lib
and /usr/lib.

» The dependencies of a dynamic executable or shared object can be displayed
using ldd. For example, the file /usr/bin/cat has the following dependencies:
$ ldd /usr/bin/cat

libc.so.1 => /lib/libc.so.1
libm.so.2 => /lib/libm.so.2

= The dependencies recorded in an object can be inspected using dump. Use

this command to display the file's .dynamic section, and look for entries that
have a NEEDED tag.

$ dump -Lvp prog
prog:
[INDEX] Tag Value
[1] NEEDED libfoo.so.1
[2] NEEDED libc.so.1

[3] RUNPATH /home/me/lib:/home/you/lib

28 October 2013 9

Symbol Table Structure

typedef struct {
E1f32 Word
E1f32 Addr
E1f32 Word
unsigned char
unsigned char
E1f32 Half

} E1£32 Sym;

28 October 2013

st name;
st value;
st size;
st info;
st other;
st shndx;

10

Parsing other sections of ELF

= For dynamic linking, the Dynamic linker primarily uses two
processor-specific tables:

» Global Offset Table (GOT)
= Procedure Linkage Table (PLT)

= Dynamic linkers support PIC Code through the GOT in each
shared library

» The GOT contains absolute addresses to all of the static data
referenced in the program.

28 October 2013

11

Dynamic Loading

LD_LIBRARY_PATH

I
- -
=

—_——_—__

libdl.so _-
LT _-
dlopen e
4 0
B \
dlsym B "\\ \\
\
\
|
diclose IR
|
(- !
dlerror Lo ‘\@
Y
\
\
\ \\@\\
- \ S
Id-linux.so \ AN

—_—
—_—
==
-~
-~

=
- -
-
-~

TR void(*s) () =

anylib.so

/

anyfuncl()

anyfunc2()

anyfuncn()

exe

int main ()

{

L void* p =

dlopen (“anylib.so”, RTLD LAZY);

dlsym(p, “anyfuncl”);
£0;

B } dlclose (p);

}

28 October 2013

Profiler components

= Shared library libelfperf.so
- Call redirection and function wrapping mechanisms
- Collecting of calls statistics
- Memory management

» Modified dynamic linker (Id-linux.so)

- Uses libelfperf.so for profiling of dynamically linked
functions

- Displays the results of profiling
» Modified dynamic loading library (libdl.so)

- Uses libelfperf.so for profiling of dynamically loaded
functions

28 October 2013 13

Call redirection mechanism

Calls redirection mechanism (Redirector) is a set of
machine codes for the next assembly instructions:

push $fcnPtr
jmp $wrapper addr

All they do is:

= Save address of profiled function in program stack

= Jump to wrapper-function

28 October 2013

14

Redirector workflow

code l, ~-T"TT= ~® Redirector
. Lﬁ/ !
void(*f) () = dlsym(p, “any_function”) ; : - ’7 PuSh$$fcnPtr
N imp Swrapper addr
=Sl fFOimm e = m T T T | @ Jmp pper .
I 1
; :
' |

®

({{

I
I

: wrapper addr Wrapper
! any_function fcnPtr

| . ..

: push %ebp @ call preProfile

I mov %esp, $ebp <: | e

I

: wrapper rp:

I . ..

: leave | E> call postProfile

I ret

' ®

I

——————————————————————————————————————— |- ret

28 October 2013

Redirector details

= Each redirector is created individually for
each profiled function

= Redirectors are placed into data segment of
process virtual memory

= The operating system allows to mark these
memory areas as executable

28 October 2013 16

Wrapping mechanism

Function Wrapping mechanism (or Wrapper) is a
function that does next things:

= Takes control from redirector

= Performs pre-profile operations

» Performs replacement of return address
= Performs jump into profiled function

= Again takes control after the work of profiled
function

= Performs post-profile operations
= Returns to caller

28 October 2013

17

Working scheme of Wrapper

Wrapper

Params

P

Context

Return address

o ————
L — —_—
—~ o~

Function address |

Start time '7‘ <:

End time 1

~

Return value _\ /_

28 October 2013

18

Implementation details (x86)

Wrapper Function
mm) | void wrapper () push %ebp Context
{ mov %esp, sebp
// push %ebp ret address start time
// movl %esp, %ebp
asm volatile (fcn address end time
"popl %ebp\n" leave
"pushal\n" retl
"pushl 32 (%esp)\n" o e
"pushl 40 (3esp) \n" | | .
"call preProfile\n" | Stack Base ngher | RegISterS
"addl $8, Sesp\n" : Memory :0/ eax [Tragar
"movl S , 36(%esp)\n" °
"mov "wrapper_rp esp) \n | fon param #n Addresses |
popall\n | |
retlin | | %EBX |_new
)i I fcn param #0 |
asm volatile (: ret address : %ECX] new
"wrapper rp:\n" | %EAX, %EBX, ¢mm | o%ESP | 4mm | %EBP |
"pushl $0\n" | %ECX, %EDX, ¢ | o4EBP ||
"pushal\n" | %ESI, %EDI I%EDX]| new
"call postProfile\n" | %ESI, %EDI |
"movl %eax, 32 (%esp)\n" : : o
"popal\n" | | /oEDI ey
"retl\n" I |
o | ' %ESI [new
| |
| |
28 October 2013 19

Wrapper details

= Wrapper doesn’t corrupt stack content

= Wrapper exists in a single copy for all

functions in each profiler implementation (x86
or x64)

» Saving/Restoring of registers’ state allows
to escape of uncontrollable changes in the
program state

= Allows to profile wide set of C/C++ functions

28 October 2013 20

Interaction of ElfPerf's components

elfperf-ld-linux.so

_dl_fixup

_dl_profile_fixup

%%

_dl_call_pltexit

libelfperf.so

Wrapper

LD_LIBRARY_PATH

— Redirectors

Statistics

Memory
management

LD_PRELOAD

<

N

7

hared memory

|
4

elfperf-libdl.so

dlopen

dlsym

diclose

dlerror

ElfPerf Storage

Function Infos

Fu

nction Statistics

28 October 2013

21

Conclusion

Now we have:

» «Light» profiler based on «patched» Id-linux.so
and libdl.so

= Support of profiling for C/C++ functions from
shared libraries

(including libs compiled with —fomit-frame-pointer
flag)

= Collecting of information about nhumber and total
duration of function calls

= Support of both x86 and x64 platforms

28 October 2013 22

Links

 Project resources:

= https://github.com/OSLL/elfperf

= http://dev.osll.ru/projects/epat/wiki/

» Contacts:

= http://osll.ru/

= Kirill.krinkin@gmail.com

= edward.ryabikov@gmail.com

= mark.zaslavskiy@gmail.com
28 October 2013

23

https://github.com/OSLL/elfperf
http://dev.osll.ru/projects/epat/wiki/
http://osll.ru/
mailto:edward.ryabikov@gmail.com
mailto:edward.ryabikov@gmail.com
mailto:edward.ryabikov@gmail.com
mailto:edward.ryabikov@gmail.com
mailto:mark.zaslavskiy@gmail.com

