Семантическое ядро рунета — высоконагруженная сontent-based рекомендательная система реального времени на базе Amazon Kinesis, Lucene (Александр Сербул, SECR-2016) — различия между версиями
Материал из 0x1.tv
StasFomin (обсуждение | вклад) |
StasFomin (обсуждение | вклад) |
||
{{fblink|1803818643204482}} {{vklink|270}} <references/> [[File:{{#setmainimage:Семантическое ядро рунета — высоконагруженная сontent-based рекомендательная система реального времени на базе Amazon Ki!.jpg}}|center|640px]] <!-- topub --> [[Категория:SECR-2016]] [[Категория:Machine Learning]] [[Категория:Распределенные системы]] {{stats|disqus_comments=3|refresh_time=2020-01-09T16:21:4522T22:05:14.634725659385|vimeo_comments=0|vimeo_plays=64|youtube_comments=0|youtube_plays=40}} |
Версия 19:05, 22 января 2020
- Докладчик
- Александр Сербул
В докладе мы поделимся опытом создания content-based рекомендательной системы для электронной коммерции, работающей на семантическом ядре рунета.
- Расскажем, как организовали централизованный сбор и обработку информации о посещении пользователями более 100 000 сайтов различной направленности на основе Amazon Kinesis.
- Поделимся опытом многопоточной онлайн-индексации потоков данных в Lucene.
- Продемонстрируем используемые базовые алгоритмы ранжирования и формирования персональных рекомендаций для посетителей более 20 000 интернет-магазинов.
Видео
Посмотрели доклад? Понравился? Напишите комментарий! Не согласны? Тем более напишите.
Презентация
Примечания и ссылки
Plays:104 Comments:3