Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017) — различия между версиями
Материал из 0x1.tv
StasFomin (обсуждение | вклад) (Новая страница: «;{{SpeakerInfo}}: {{Speaker|Федор Краснов}} <blockquote> Поиск оптимального совместного использования мет…») |
StasFomin (обсуждение | вклад) |
||
;{{SpeakerInfo}}: {{Speaker|Федор Краснов}} <blockquote> Поиск оптимального совместного использования методов моделирования физических процессов и моделирования на основе машинного обучения является одним из приоритетных направлений исследований для ПАО ГазпромНефть. Рассмотрение частной задачи по моделированию дополнительной нефтеотдачи (КИН) привело авторов к тому, что кроме традиционных вычислительных экспериментов на регулярной решётке более продуктивными могут стать вычисления с помощью алгоритмов машинного обучения. Авторы рассмотрели подход к построению прокси-моделей на основе Random Forest Regressor. </blockquote> {{VideoSection}} {{vimeoembed|240325208|800|450}} <!-- {{youtubelink|}} --> {{SlidesSection}} [[File:Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017).pdf|left|page=-|300px]] {{----}} {{LinksSection}} * [http://2017.secr.ru/program/submitted-presentations/machine-learn-approach-to-eor-research Страничка доклада на сайте конференции] <!-- <blockquote>[©]</blockquote> --> <references/> <!-- topub --> [[Категория:SECR-2017]] [[Категория:Draft]] |
Версия 22:38, 6 ноября 2017
- Докладчик
- Федор Краснов
Поиск оптимального совместного использования методов моделирования физических процессов и моделирования на основе машинного обучения является одним из приоритетных направлений исследований для ПАО ГазпромНефть.
Рассмотрение частной задачи по моделированию дополнительной нефтеотдачи (КИН) привело авторов к тому, что кроме традиционных вычислительных экспериментов на регулярной решётке более продуктивными могут стать вычисления с помощью алгоритмов машинного обучения. Авторы рассмотрели подход к построению прокси-моделей на основе Random Forest Regressor.
Видео
Презентация
Примечания и ссылки