Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017) — различия между версиями
Материал из 0x1.tv
StasFomin (обсуждение | вклад) |
StasFomin (обсуждение | вклад) |
||
{{SlidesSection}}
[[File:Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017).pdf|left|page=-|300px]]
{{----}}
{{LinksSection}}
* [http://2017.secr.ru/program/submitted-presentations/machine-learn-approach-to-eor-research Страничка доклада на сайте конференции]
<!-- <blockquote>[©]</blockquote> -->
<references/>
<!-- topub -->
[[Категория:SECR-2017]]
[[Категория:Draft]] |
Версия 17:53, 10 ноября 2017
- Докладчик
- Федор Краснов
Поиск оптимального совместного использования методов моделирования физических процессов и моделирования на основе машинного обучения является одним из приоритетных направлений исследований для ПАО ГазпромНефть.
Рассмотрение частной задачи по моделированию дополнительной нефтеотдачи (КИН) привело авторов к тому, что кроме традиционных вычислительных экспериментов на регулярной решётке более продуктивными могут стать вычисления с помощью алгоритмов машинного обучения. Авторы рассмотрели подход к построению прокси-моделей на основе Random Forest Regressor.
Видео
Презентация
Примечания и ссылки