Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017) — различия между версиями
Материал из 0x1.tv
StasFomin (обсуждение | вклад) |
StasFomin (обсуждение | вклад) |
||
[[File:Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017).pdf|left|page=-|300px]]
{{----}}
{{LinksSection}}
* [http://2017.secr.ru/program/submitted-presentations/machine-learn-approach-to-eor-research Страничка доклада на сайте конференции]
<!-- <blockquote>[©]</blockquote> -->
* [https://www.youtube.com/watch?v=DfODAnqwrCE Видео «Технологии Геологоразведки»]
<references/>
<!-- topub -->
[[Категория:SECR-2017]]
{{stats|youtube_plays=0|vimeo_comments=0|refresh_time=2017-11-11T00:02:54.354091|vimeo_plays=3}} |
Версия 21:02, 10 ноября 2017
- Докладчик
- Федор Краснов
Поиск оптимального совместного использования методов моделирования физических процессов и моделирования на основе машинного обучения является одним из приоритетных направлений исследований для ПАО ГазпромНефть.
Рассмотрение частной задачи по моделированию дополнительной нефтеотдачи (КИН) привело авторов к тому, что кроме традиционных вычислительных экспериментов на регулярной решётке более продуктивными могут стать вычисления с помощью алгоритмов машинного обучения. Авторы рассмотрели подход к построению прокси-моделей на основе Random Forest Regressor.
Видео
Презентация
Примечания и ссылки
Plays:3
Comments:0