Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017)
Материал из 0x1.tv
Версия от 15:00, 31 августа 2021; StasFomin (обсуждение | вклад)
Короткая ссылка: 20171020BL
- Докладчик
- Федор Краснов
Поиск оптимального совместного использования методов моделирования физических процессов и моделирования на основе машинного обучения является одним из приоритетных направлений исследований для ПАО ГазпромНефть.
Рассмотрение частной задачи по моделированию дополнительной нефтеотдачи (КИН) привело авторов к тому, что кроме традиционных вычислительных экспериментов на регулярной решётке более продуктивными могут стать вычисления с помощью алгоритмов машинного обучения. Авторы рассмотрели подход к построению прокси-моделей на основе Random Forest Regressor.
Видео
Посмотрели доклад? Понравился? Напишите комментарий! Не согласны? Тем более напишите.
Презентация
Примечания и ссылки
Plays:53 Comments:1